
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Isabel Carvalho Neri

Towards Quantum Program Calculation

October 2018

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Ana Isabel Carvalho Neri

Towards Quantum Program Calculation

Master dissertation
Mestrado Integrado em Engenharia Física - Física da Informação

Dissertation supervised by
José Nuno Oliveira (Univ. Minho)
Rui Soares Barbosa (Univ. Oxford)

October 2018

ACKNOWLEDGEMENTS

At foremost, I am grateful to my advisor José Nuno Oliveira for the availability, patience and
motivation and to my co-mentor Rui Soares Barbosa for shared knowledge and help given.
Such teachers are a real inspiration to students.

I also thank my friends and family for the continuous encouragement, comfort and help.
I acknowledge the financial support by INESC TEC and the opportunity granted by Quan-

taLab IBM Q Academic Hub.
Last but not least, I praise the kind welcoming given by the ARCA team, the HASLab group

and all the INESC TEC institute and remark the excellent work conditions and healthy work
environment provided for research.

i

ABSTRACT

Based on the similarity between the categorial derivation of classical programs from their
specification and the category theory approach to quantum physics, this dissertation aims at
extending the laws of classical program algebra to quantum programming.

In this context, the principles of the algebra of classical programs are applied to quantum
programming, in order to verify the feasibility of creating correct-by-construction quantum
circuits that can run on quantum devices available in the IBM Q Experience.
The reversibility restrictions of quantum circuits are ensured by minimal complements.

Moreover, measurements are postponed to the end of recursive computations called “quan-
tamorphisms” to avoid the collapse of quantum states. Quantamorphisms are classical cata-
morphisms extended to ensure quantum reversibility.
The derived quantamorphisms implement quantum cycles (vulg. for-loops) and quantum

folds on lists. By Kleisli correspondence, quantamorphisms can be written as monadic func-
tional programs with quantum parameters. This enables the use of Haskell, a monadic func-
tional programming language, to perform the experimental work. The examples of the cal-
culated quantum programs are simulated in Haskell, Quipper and QISKit and run on the
quantum computers of the IBM Q Experience.
The main conclusions of this work are that, while all the simulations produced correspond to

the predicted results, running these programs on real quantum devices results in a significant
amount of errors. As quantum devices are constantly evolving, it is likely that in the near
future these devices will increase their reliability, allowing programs to run more accurately.
The extension of the quantamorphism concept to more general input structures, such as

finite trees, remains a challenge that is left for future work. Also relevant will be the study
of conditional quantum control without measurements, which will extend the scope of quan-
tamorphisms as quantum circuit specifications.

ii

RESUMO

Tendo como base a similaridade entre a matemática categorial para derivar programas a partir
da sua especificação e a teoria categorial usada na física quântica, esta dissertação pretende
estender as leis da álgebra de programas clássicos à programação quântica.

Nesse contexto, a dissertação trata de explorar o significado desses princípios e suas con-
struções na programação quântica e verificar a viabilidade de as aplicar à criação de progra-
mas quânticos correctos que possam correr em dispositivos quânticos disponíveis no IBM Q
Experience.
As restrições de reversibilidades exigidas pela programação quântica são asseguradas por

complemento mínimo, e para evitar o colapso dos estados quânticos a medição é adiada através
de “quantamorfismos”, nome dado à extensão reversível do conceito clássico de catamorfismo.
Os quantamorfismos que se implementaram permitem correr ciclos-for quânticos e folds

quânticos sobre listas. Com base na correspondência de Kleisli é possível escrevê-los como
programas funcionais monádicos com parâmetros quânticos. Para esse efeito recorre-se à
linguagem de programação funcional Haskell como base para o trabalho experimental. Os
exemplos dos programas quânticos calculados foram simulados em Haskell, Quipper e QISKit
e correram nos computadores quânticos da IBM Q Experience.
Constata-se que, enquanto todas as simulações produzidas correspondem ao previsto, correr

estes programas em máquinas reais resulta numa quantidade significativa de erros. Como os
dispositivos quânticos estão em constante evolução, é provável que num futuro próximo estes
dispositivos aumentem a sua fiabilidade, permitindo que os programas corram de forma mais
precisa.
Entre as questões que esta tese levanta inclui-se a extensão dos seus resultados a estruturas

de entrada mais gerais, como por exemplo árvores, e estruturas de controlo condicionais que
não efectuem medidas e que assim possam estender o âmbito do quantamorfismo como veículo
de especificação de circuitos quânticos.

iii

CONTENTS

1 introduction 1
1.1 The rise of quantum computing 1
1.2 From classical to quantum programming 2
1.3 Overview of the literature 3
1.4 Aims of the dissertation 4
1.5 Structure of the dissertation 5

2 background 6
2.1 Categories 6
2.2 Functors 15
2.3 Monads 16
2.4 Recursion 17
2.5 Allegories 19
2.6 Summary 22

3 quantum computing 24
3.1 Overview of quantum theory 24
3.2 Bit vs qubit 28
3.3 Operations 30
3.4 Density matrix 31
3.5 Peculiarities of quantum computing 32
3.6 Computing versus physics 33
3.7 Summary 33

4 calculating quantum programs 35
4.1 Increasing injectivity 36
4.2 Recursive programs 41
4.3 Quantamorphism 48
4.4 Running quantamorphisms 55
4.5 Summary 57

5 application - case studies and experiments 58
5.1 Challenges 58
5.2 GHCi 59
5.3 Quipper 63
5.4 QISKit and IBM Q 89
5.5 Discussion 128

iv

Contents v

5.6 Summary 136
6 conclusions and future work 137

6.1 Prospect for future work 138

a laws of the algebra of programming 150
b quipper implementation 154
c quipper results 164
d qiskit implementation 197
e qiskit results 228

L I S T O F F I G U R E S

Figure 1.1 IBM quantum computer processor. 1

Figure 2.1 Curry-Howard-Lambek. 7

Figure 2.2 Diagram portraying the identity function. 8

Figure 2.3 A pair of objects A (domain) and B (codomain) in some categoryC linked

by an arrow f : A ! B . As an example,f could be a function mapping an

arbitrary group of students (set A) to their student numbers (set B). 8

Figure 2.4 Composition (in red) of arrows f and g and the identity (in blue) on object

A. Continuing with the example of the previous �gure, suppose setC rep-

resents the set of email addresses of students and thatg is a function that

receives the student's number and returns the corresponding email.g � f is

the composition of g and f that to a given student's name gives its email

address. 9

Figure 2.5 Diagram of the unit law (f � idA = f = idB � f). 9

Figure 2.6 Three parallel (independent) processes running in parallel. Such parallel

processes can be anything, e.g.f may be a program playing music in the

background,g may be a program displaying something on a screen, andg may

be a program accepting inputs from the user. The diagram shows implicitly

the associative law of parallel composition:(f
 g)
 h = f
 (g
 h). 9

Figure 2.7 Example of a non-injective function f . 10

Figure 2.8 Composition S � R. 12

Figure 2.9 Diagrams of the initial object and terminal object, respectively (Bird and

de Moor, 1997). 13

Figure 2.10 Initial datatype function fusion (left) or �nal datatype (right) fusion. 13

Figure 2.11 Product diagram illustrates the cancellation properties � 1 � (f O g) = f and

� 2 � (f O g) = g. 14

Figure 2.12 Coproduct. This diagram illustrates the cancellation properties [f , g] � i 1 = f

and [f , g] � i 2 = g. 15

Figure 2.13 Diagram with composition g � f and extension ofg. 16

Figure 2.14 Monadic composition � general case. 16

Figure 2.15 Program structure. 17

Figure 2.16 Catamorphisms. 19

Figure 2.17 Catamorphism representing the Peano Algebra. 19

Figure 2.18 Binary Relations taxonomy. 22

vi

List of Figures vii

Figure 3.1 Diagram representing a state. 25

Figure 3.2 Diagram representing an e�ect (left) and a bracket (right). 26

Figure 3.3 Bloch Sphere representing a qubit (Nielsen and Chuang, 2011). 29

Figure 3.4 Combination of states. 30

Figure 3.5 E�ect of measuring two (entangled) qubits. 31

Figure 4.1 Program from speci�cation. 35

Figure 4.2 Injectivity (pre)order. 36

Figure 4.3 Chaining n � 1-complement computation. 41

Figure 4.4 Diagram of generic fold. 42

Figure 4.5 Fold over natural numbers. 43

Figure 4.6 Generalized for-loop (`fold' over the natural numbers). 44

Figure 4.7 Generalized fold over lists. 46

Figure 4.8 Complement � 1 with f to build the envelop for foldrfb. 47

Figure 4.9 Teleportation protocol (Alice). 49

Figure 4.10 Symmetry in the teleportation protocol (Alice part). 50

Figure 4.11 Quantum foldr over unitary matrix U. 55

Figure 4.12 Work-�ow. 57

Figure 5.1 An example of a gate without direct implementation in IBM Q Experi-

ence. 59

Figure 5.2 Circuit from quantamorphism qfor X working with 2 qubits as controls. 70

Figure 5.3 Original circuit generated by qfor X working with 3 qubits as controls. 72

Figure 5.4 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 1). 72

Figure 5.5 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 2). 72

Figure 5.6 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 3). 73

Figure 5.7 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 4). 73

Figure 5.8 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 5). 73

Figure 5.9 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 6). 73

Figure 5.10 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 7). 73

Figure 5.11 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 8). 75

List of Figures viii

Figure 5.12 Decomposed circuit generated byqfor X working with 3 qubits as controls

(section 9). 75

Figure 5.13 Circuit from for-loop quantamorphism over Y gate. 76

Figure 5.14 Decomposed circuit of for-loop quantamorphism overY gate (section 1). 76

Figure 5.15 Decomposed circuit of for-loop quantamorphism overY gate (section 2). 76

Figure 5.16 Decomposed circuit of for-loop quantamorphism overY gate (section 3). 77

Figure 5.17 Decomposed circuit of for-loop quantamorphism overY gate (section 4). 77

Figure 5.18 Decomposed circuit of for-loop quantamorphism overY gate (section 5). 78

Figure 5.19 Decomposed circuit of for-loop quantamorphism overY gate (section 6). 78

Figure 5.20 Decomposed circuit of for-loop quantamorphism overY gate (section 7). 78

Figure 5.21 Decomposed circuit of for-loop quantamorphism overY gate (section 8). 78

Figure 5.22 Circuit from for-loop quantamorphism over Hadamard gate . 79

Figure 5.23 Decomposed circuit of for-loop quantamorphism over Hadamard gate (section

1). 79

Figure 5.24 Decomposed circuit of for-loop quantamorphism over Hadamard gate (section

2). 79

Figure 5.25 Decomposed circuit of for-loop quantamorphism over Hadamard gate (section

3). 80

Figure 5.26 Decomposed circuit of for-loop quantamorphism over Hadamard gate (section

4). 81

Figure 5.27 Circuit from quantamorphism foldr XOR . 81

Figure 5.28 Decomposed circuit from fold quantamorphism overXOR gate (section 1). 81

Figure 5.29 Decomposed circuit from fold quantamorphism overXOR gate (section 2). 83

Figure 5.30 Decomposed circuit from fold quantamorphism overXOR gate (section 3). 83

Figure 5.31 Decomposed circuit from fold quantamorphism overXOR gate (section 4). 83

Figure 5.32 Decomposed circuit from fold quantamorphism overXOR gate (section 5). 83

Figure 5.33 Decomposed circuit from fold quantamorphism overXOR gate (section 6). 84

Figure 5.34 Decomposed circuit from fold quantamorphism overXOR gate (section 7). 84

Figure 5.35 Decomposed circuit from fold quantamorphism overXOR gate (section 8). 84

Figure 5.36 Decomposed circuit from fold quantamorphism overXOR gate (section 9). 84

Figure 5.37 Decomposed circuit from fold quantamorphism overXOR gate (section 10). 85

Figure 5.38 Decomposed circuit from fold quantamorphism overXOR gate (section 11). 85

Figure 5.39 Decomposed circuit from fold quantamorphism overXOR gate (section 12). 85

Figure 5.40 Decomposed circuit from fold quantamorphism overXOR gate (section 13). 85

Figure 5.41 Decomposed circuit from fold quantamorphism overXOR gate (section 14). 86

Figure 5.42 Decomposed circuit from fold quantamorphism overXOR gate (section 15). 86

Figure 5.43 Decomposed circuit from fold quantamorphism overXOR gate (section 16). 86

Figure 5.44 Decomposed circuit from fold quantamorphism overXOR gate (section 17). 86

List of Figures ix

Figure 5.45 Decomposed circuit from fold quantamorphism overXOR gate (section 18). 87

Figure 5.46 Decomposed circuit from fold quantamorphism overXOR gate (section 19). 87

Figure 5.47 Decomposed circuit from fold quantamorphism overXOR gate (section 20). 87

Figure 5.48 Decomposed circuit from fold quantamorphism overXOR gate (section 21). 87

Figure 5.49 Decomposed circuit from fold quantamorphism overXOR gate (section 22). 88

Figure 5.50 Decomposed circuit from fold quantamorphism overXOR gate (section 23). 88

Figure 5.51 Decomposed circuit from fold quantamorphism overXOR gate (section 24). 88

Figure 5.52 Decomposed circuit from fold quantamorphism overXOR gate (section 25). 88

Figure 5.53 Decomposed circuit from fold quantamorphism overXOR gate (section 26). 89

Figure 5.54 Decomposed circuit from fold quantamorphism overXOR gate (section 27). 89

Figure 5.55 Coupling map of IBM Q 5 Tenerife V1.x.x (ibmqx4). The direction of the

arrows reads from control to target e.g. the qubit Q2 controls Q0 and Q1

and can be controlled by the qubits Q4 and Q3, and the Q4 has to direct

in�uence in Q0 or Q1. 92

Figure 5.56 Coupling map of IBM Q 16 Rueschlikon V1.x.x (ibmqx5). The direction of

the arrows reads from control to target. 96

Figure 5.57 Circuit from for-loop quantamorphism over X gate. 98

Figure 5.58 Circuit from for-loop quantamorphism over X gate with measurement gate. 99

Figure 5.59 Histogram of result. 100

Figure 5.60 Decomposed circuit from matrix quantamorphism for X. 100

Figure 5.61 Automatic adaptation to the device ibmqx4 of the circuit from matrix quan-

tamorphism qfor X (section 1). 101

Figure 5.62 Automatic adaptation to the device ibmqx4 of the circuit from matrix quan-

tamorphism qfor X (section 2). 101

Figure 5.63 Histogram: results of circuit for-loop quantamorphism overX gate with state

preparation j000i in ibmqx4. 102

Figure 5.64 Initial circuit of matrix quantamorphism qfor X adapted to LSB/MSB

change and to the coupling map. 103

Figure 5.65 Initial circuit of matrix quantamorphism qfor X adapted and with measure-

ment gates. 103

Figure 5.66 Decomposed circuit of matrix quantamorphism qfor X adapted. 104

Figure 5.67 Simulation output of circuit matrix quantamorphism for X adapted. 104

Figure 5.68 Automatic adaptation to the device ibmqx4 of the adapted circuit from ma-

trix quantamorphism for X. 104

Figure 5.69 Results of running the circuit matrix quantamorphism qfor X adaptedibmqx4.105

Figure 5.70 Simulation of program circuit quantamorphism qfor X with di�erent input

states. 106

List of Figures x

Figure 5.71 Execute of program circuit quantamorphism qfor X with di�erent input

states in ibmqx4. 107

Figure 5.72 Simulation of circuit qfor X gate with 3 control qubits. 108

Figure 5.73 Execution in the real device ibmqx4 of circuit qfor X gate with 3 control

qubits. 108

Figure 5.74 Simulations of experiments. 109

Figure 5.75 Execution in the real device ibmqx4. 110

Figure 5.76 Initial circuit of gate quantamorphism qfor Y in QISKit implementation

(section 1). 110

Figure 5.77 Initial circuit of gate quantamorphism qfor Y in QISKit implementation

(section 2). 110

Figure 5.78 Initial circuit of gate quantamorphism qfor Y in QISKit implementation

(section 3). 111

Figure 5.79 Circuit of matrix quantamorphism qfor Y with measurement gates. 111

Figure 5.80 Simulation of circuit matrix quantamorphism for Y. 112

Figure 5.81 Decomposed circuit of matrix quantamorphism qfor Y (section 1). 112

Figure 5.82 Decomposed circuit of matrix quantamorphism qfor Y (section 2). 112

Figure 5.83 Decomposed circuit of matrix quantamorphism qfor Y (section 3). 112

Figure 5.84 Decomposed circuit of matrix quantamorphism qfor Y (section 4). 113

Figure 5.85 Decomposed circuit of matrix quantamorphism qfor Y (section 5). 113

Figure 5.86 Circuit of matrix quantamorphism qfor Y (section 1). 113

Figure 5.87 Circuit of matrix quantamorphism qfor Y (section 2). 113

Figure 5.88 Circuit of matrix quantamorphism qfor Y (section 3). 113

Figure 5.89 Circuit of matrix quantamorphism qfor Y (section 4). 114

Figure 5.90 Output of running the circuit matrix quantamorphism qfor Y in ibmqx4 de-

vice. 114

Figure 5.91 Initial circuit of matrix quantamorphism qfor Yadapted to LSB/MSB change

(section 1). 114

Figure 5.92 Initial circuit of matrix quantamorphism qfor Yadapted to LSB/MSB change

(section 2). 114

Figure 5.93 Initial circuit of matrix quantamorphism qfor Yadapted to LSB/MSB change

(section 3). 115

Figure 5.94 Measurement gates of the circuit adapted. 115

Figure 5.95 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 1). 116

Figure 5.96 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 2). 116

List of Figures xi

Figure 5.97 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 3). 116

Figure 5.98 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 4). 116

Figure 5.99 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 5). 117

Figure 5.100 Decomposed circuits of quantamorphismfor Y to execute in QASM simu-

lator (section 6). 117

Figure 5.101 Running adapted circuit of quantamorphism for Y in ibmqx4. 117

Figure 5.102 Results of the improvement experiments. 118

Figure 5.103 Di�erent state preparations of quantamorphism for Y . 119

Figure 5.104 Simulations of experiments of quantamorphismfor Y . 120

Figure 5.105 Execution in the real device ibmqx4 of quantamorphism for Y . 121

Figure 5.106 Initial circuit of for-loop quantamorphism over Hadamard gate in QISKit

implementation. 121

Figure 5.107 Simulation of quantamorphism over Hadamard gate. 121

Figure 5.108 Decomposed circuit of for-loop quantamorphism over Hadamard gate to ex-

ecute in QASM simulator (section 1). 122

Figure 5.109 Decomposed circuit of for-loop quantamorphism over Hadamard gate to ex-

ecute in QASM simulator (section 2). 122

Figure 5.110 Output of running the circuit of for-loop quantamorphism over Hadamard

gate in ibmqx4 device. 122

Figure 5.111 Decomposed circuit of for-loop quantamorphism over Hadamard gate to ex-

ecute in ibmqx4 (section 1). 123

Figure 5.112 Decomposed circuit of for-loop quantamorphism over Hadamard gate to ex-

ecute in ibmqx4 (section 2). 123

Figure 5.113 Circuit of quantamorphism over Hadamard gate adapted to QISKit. 123

Figure 5.114 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in QASM simulator (section 1). 124

Figure 5.115 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in QASM simulator (section 2). 124

Figure 5.116 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in ibmqx4 (section 1). 124

Figure 5.117 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in ibmqx4 (section 2). 125

Figure 5.118 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in ibmqx4 (section 3). 125

List of Figures xii

Figure 5.119 Decomposed circuit of for-loop quantamorphism over Hadamard gate adapted

to QISKit to execute in ibmqx4 (section 4). 125

Figure 5.120 Output of running the circuit of for-loop quantamorphism over Hadamard

gate adapted to QISKit in ibmqx4 device. 125

Figure 5.121 Simulation of the experiments of quantamorphism over Hadamard gate.126

Figure 5.122 Execution in the real device ibmqx4 of quantamorphism over Hadamard

gate. 127

Figure 5.123 Simulation of quantamorphism foldr XOR with input j00000i . 128

Figure 5.124 Executing circuit of quantamorphism foldr XOR in ibmqx5. 128

Figure 5.125 Execution in the real device ibmqx5 of attempts to improve the results of

quantamorphism over Hadamard gate. 129

Figure 5.126 Simulation of the experiments of quantamorphism overXOR gate adapted

to QISKit. 129

Figure 5.127 Execution in the real device ibmqx5 of quantamorphism over XOR gate

adapted to QISKit. 130

Figure 5.128 Coupling maps of the experiments in quantamorphism overX gate. 135

Figure 5.129 Coupling maps of the experiments in quantamorphism overY gate. 135

Figure 5.130 Coupling maps of the experiments in quantamorphism over Hadamard gate

. 136

Figure 6.1 The example of from (Yanofsky and Mannucci, 2008) page 236 there is quan-

tum control 138

Figure 6.2 Output of the quantum_ if circuit adapted to QISKit with q = 0 and p = 0

in the ibmqx4 device. 139

Figure 6.3 Experimenting a quantamorphism over the Hadamard gate in the IBM device

with 20 qubits. 141

Figure E.1 The circuit for-loop quantamorphism over Hadamard gate when running in

backend `ibmq_20_tokyo' (section 1). 329

Figure E.2 The circuit for-loop quantamorphism over Hadamard gate when running in

backend `ibmq_20_tokyo' (section 2). 329

Figure E.3 State preparations. 332

L I S T O F TA B L E S

Table 2.1 Terminology summary. 22

Table 3.1 Useful information regarding quantum mechanics (Nielsen and Chuang, 2011;

Selinger, 2004). 28

Table 5.1 Truth table of circuit for-loop quantamorphism over X gate. 61

Table 5.2 Truth table of the XOR gate. 62

Table 5.3 Input for circuit for-loop quantamorphism over X gate. 65

Table 5.4 Results of Quipper simulation in the circuit from matrix qfor X working

with 2 qubits as control. 71

Table 5.5 Results of Quipper simulation both circuits of qfor with 3 qubits. The letter

O stands for Original circuit and the letter D stands for the Decomposed

circuit. 74

Table 5.6 Results of Quipper simulation in the circuit from for-loop quantamorphism

over Y gate. These values in the original circuit match the decomposed

circuit. 77

Table 5.7 Results of Quipper simulation in the circuit from for-loop quantamorphism

over Hadamard gate . 80

Table 5.8 Results of Quipper simulation in the circuit from quantamorphism foldr XOR . 82

Table 5.9 Truth table of quantamorphism over X gate whereq2 is the LSB. 131

Table 5.10 Truth table of quantamorphism over X gate whereq2 is the MSB. 132

Table 6.1 Results of Quipper simulation of quantum_ if circuit. 139

xiii

1
I N T RO D U C T I O N

1.1 the rise of quantum computing

At the time of writing this dissertation, most of the industry sector worldwide is still �nding

out reasons to invest in quantum computing. By contrast, companies at the vanguard of quan-

tum technology (e.g. IBM, Google, Microsoft) are already exploring it. There is nevertheless

a growing interest from speci�c companies in the potential advantages o�ered by quantum

technologies, namely in the automotive and telecommunication sectors (Simon et al., 2006;

2018, 2017; Team, 2018).

Figure 1.1.: IBM quantum computer processor.

Meanwhile, academic institutions all over

the world are making visible progress, for

example researchers in China who have re-

cently broken the record for the number of

entangled qubits (Wang et al., 2018). Such

increasing research activity around quantum

technologies is also leading to new consortia

between industry and academia. An exam-

ple of this is the IBM Q Network, which

involves a number of companies (e.g. Mit-

subishi Chemical) as well as academic institu-

tions (e.g. the University of Oxford) aiming

primarily at sharing know-how.

As part of this increasing concern for quantum computing, the IBM Quantum Network has

recently added QuantaLab as their Academic Partner in Portugal (Shifter, 2018). QuantaLab

is a consortium involving the University of Minho (UM), the International Iberian Nanotech-

nology Laboratory (INL), the Centre of Engineering and Product Development (CEiiA) and

INESC TEC (Institute for Systems and Computer Engineering, Technology and Science).

The main goal of this academic hub is to explore how quantum computing can be used to

make simulations and tests in several resource-demanding �elds (Shifter, 2018).

1

1.2. From classical to quantum programming 2

It should be mentioned that most of the tools used in these IBM Q hubs are quantum

devices based on quantum gates available online to anyone interested in the subject.1 Anyway,

quantum computation devices such as those available from the IBM Q Experiment are still

relying on rudimentary machinery that gives room to scepticism.

Nevertheless, due to the accumulation of problems that cannot be (e�ciently) solved by

classic computers and the physical limitation brought on classic systems due to the decreasing

of the size of circuits, quantum computation appears as a prime candidate to be thoroughly

studied as a viable option.

1.2 from classical to quantum programming

Those familiar with the history of classic computation will have a feeling of déjà vu when

looking at the (more recent) history of quantum computation.

Classical computing blends knowledge of philosophy, linguistics, mathematics and physics.

The story of classic computers started from mathematical abstractions which led in particu-

lar to the so-called Turing machine (Turing, 1936), which is still regarded as the canonical,

abstract notion of a programmable computer, and to the� -calculus (Church, 1936), a math-

ematical system that provided a basis for functional programming.

The step from abstraction to reality was possible due to advances in physics like the inven-

tion of triodes (1912) and then of transistors (1948), leading to the integrated circuits that

are the basis of thein silico technology of today (Nebeker, 2009; Routray, 2004; Laws, 2013).

Once such devices were �rst employed to store information in realistic situations it became

clear that further abstraction was required. This led to the explicit adoption of formal logic,

an abstraction still in use today � as the aphorism says, �Logic is the language of computing�.

Analogously to classical computing, but several decades later, the quantum computing

trend was born out of mathematical abstractions again, this time with the description of the

�rst universal quantum computer by Deutsch (1985). And the parallel goes on: nowadays,

physicists are testing methods to implement such abstract concepts, linking theory to reality

once again.

In a similar fashion to what happened in classical computation, software is getting into

the quantum computation history. The birth of software as an independent technology took

place in the 1950s. (The �rst programming language, Fortran, appeared in 1953.) But soon it

was faced with a crisis because an e�ective discipline of programming was lacking. The term

software engineeringappeared in the 1960s and was the subject of a conference supported

by NATO, in 1968, in Garmisch, Germany. People at the conference expressed concerns and

called for theoretical foundations. This resulted in the birth of the principles of structured

1For details visit the IBM Q Experiment website, https://quantumexperience.ng.bluemix.net/qx/
experience .

1.3. Overview of the literature 3

programming that became popular in the 1970s. But, in a sense, the 1968 crisis is not over

yet: the complexity of the software that the IT sector requires programmers to build every

day leads to unsafe code due to the widespread use of informal, ad hoc methods, instead of

the mathematically sound methods anticipated by its founding fathers.

The problem of software engineering is that quality control is based ontesting the software

after it is built, and not on ensuring quality in a stepwise manner, as advocated by academia

since the 1970s.

Some believe that the problem is lack of mathematical abstraction once again (Kramer,

2007). Stepping back to the initial computation abstractions of the 1930s, lambda calculus

was developed with the aim of creating a model of computation based exclusively on func-

tion abstraction and application. This led to a mathematically robust style of programming

known as functional programming (FP), which has become a reliable paradigm for producing

software. The correct-by-construction programming techniques proposed by this �eld have

shown a signi�cant impact on software theory. Such techniques promise signi�cant reduction

in development costs by avoiding dependence on testing and debugging.

Correct-by-construction advocates the calculation of programs from problem speci�cations.

In the functional setting, such formal methods are based on a so-called�Algebra of Program-

ming� (AoP) which is the subject of a textbook by Bird and de Moor (1997). The branch of

mathematics used to formalise the abstractions in AoP is category theory (MacLane, 1971).

Despite its strong algebraic basis � cf. Hilbert spaces, linear algebra, etc. (Nielsen and

Chuang, 2011) � quantum mechanics is still a counter-intuitive �eld, and one that will

require further abstractions for programmers. In quantum mechanics, every measure implies

a destruction of the superposition state, spoiling the quantum advantage altogether. This

renders current debuggingstrategies obsolete and nearly impossible: one needs toget it right

from the very beginning!

Because testing and debugging won't apply to the speci�c case of quantum programming,

at least in their current standards, the traditional life-cycle based on edit-compile-run is not

an option. This further increases the need for correct-by-construction methods in quantum

programming.

1.3 overview of the l i terature

The literature on quantum computing is vast. Two standard textbooks written by Nielsen and

Chuang (2011) and Yanofsky and Mannucci (2008) thoroughly present the quantum world

to programmers. These books start from basic notions of quantum mechanics and lead the

topic to quantum computing, giving insights on quantum circuits, on quantum algorithms

and even on how the hardware of a quantum computer works.

1.4. Aims of the dissertation 4

The related topic of reversible computing (Bennett, 1973) was triggered by the so-called

Landauer Principle (Landauer, 1961), stating that, with increased reversibility it is possi-

ble to reduce the energy consumption of software systems. Although recent papers dismiss

the thermodynamic motivation (López-Suárez et al., 2016), reversibility is a well-developed

research theme in the intersection of computing with quantum physics (Mu et al., 2004).

The mathematical basis of this dissertation owes much to books such as (Coecke, 2011)

and (Bird and de Moor, 1997), which supply de�nitions, examples and exercises that allow

an easy introduction to category theory and categorial logic. Coecke (2011) stresses on the

importance of these theories to computer science and physics, showing how powerful and

�exible categories can be in a small and large scale. These textbooks provide a large part of

the background of this dissertation.

Coecke and Kissinger (2017) explore diagrams common in category theory to explain some

of the most interesting properties of quantum computing. Concerning quantum program-

ming languages, Selinger (2004) goes further and outlines the syntax and semantic rules of

a functional quantum programming language with some high-level features, and Altenkirch

and Grattage (2005) move a step forward by aiming at quantum control and quantum data.

These works result in several quantum language proposals. One of these, named Quipper

(Green et al., 2013a), will play an important role in the work described in this dissertation.

1.4 aims of the dissertation

The main research questions this thesis wishes to address are the following:

1. Is it possible to extend the MPC2 culture, principles and constructions � which have

been so e�ective in disciplining the whole �eld of recursive functional programming and

data structuring � to quantum programming?

2. Is it viable to apply such constructions to derive programs down to the level of actually

running them on the experimental quantum machines of today?

An important requirement to take into account when scaling the classic paradigms to

quantum level is reversibility, because quantum programs are limited to so-called unitary

transformations (Yanofsky and Mannucci, 2008). Therefore, this research intersects with

that on reversible computation.

It must be mentioned that a similar extension of the MPC paradigm to probabilistic pro-

gramming has shown to be viable in practice (Murta and Oliveira, 2015), although in a very

di�erent context: that of reasoning about program reliability in presence of faulty hardware.

The laws of such an approach requiretyped linear algebra rather than just relational algebra3

2MPC stands for �Mathematics of Program Construction�, a branch of applied mathematics proposed by
Backhouse (2004) for program calculation based on logic and relational algebra.

3This has been referred to by the acronym LAoP (�linear algebra of programming�) (Oliveira, 2012).

1.5. Structure of the dissertation 5

and apply to probabilistic functions (Markov chains) which, on the experimental side, require

programming over the distribution monad as implemented by Erwig and Kollmannsberger

(2006). The recursive programming construction at target was the so-calledcatamorphism

(Bird and de Moor, 1997). The idea now is to generalize from probabilistic catamorphisms to

unitary transformations over a vector space monad implementing �nite-dimensional Hilbert

spaces (Coecke, 2011). The corresponding extension of the catamorphism concept, which will

be studied and implemented in this dissertation, will be termed �quantamorphism� � a form

of recursive classic control ofquantum data (Oliveira, 2018).

A half-way concept between classical functions and unitary transformations is that of a

reversible function, also known as isomorphism or bijection. The dissertation will contribute

to the current investment in reversible computing by extending a technique known ascom-

plementation (Matsuda et al., 2007) to recursive programs. The background of all this re-

search is also enhanced by studies in quantum functional programming (QFP) (Altenkirch

and Grattage, 2005; Green et al., 2013a) and extensive research in categorial quantum physics

(Coecke, 2011).

1.5 structure of the dissertation

To make the presentation self-contained, the next chapter introduces the basic mathematical

concepts essential to understanding this dissertation and some background on how these apply

to computer science.

Chapter 3 introduces quantum computing. It aims at exposing the reader to the new

possibilities o�ered by the quantum paradigm.

Chapter 4 develops the quantamorphism concept, an extension of classical catamorphisms

to the quantum context.

The implementation of quantamorphisms can be found in chapter 5. Some examples are

given to illustrate how to derive a reversible program from such speci�cations, upon which

quantum circuits are generated. Such circuits or their decompositions are later implemented

in IBM Q Experience devices. Details of the outcome of each experiment and of the tooling

involved are given in the appendices.

Finally, chapter 6 draws conclusions and points to a number of questions raised by the work

developed in this master's project, i.e. topics that are left as suggestions for future work.

2
B AC KG RO U N D

The work reported in this dissertation relies on a mild application of category theory(Awodey,

2010) to describing computations in general, and quantum computations in particular. The

standard text on category theory was written by MacLane (1971) more than forty years ago.

Other textbooks have meanwhile appeared in which such a generic theory is presented bearing

computing in mind, notably written by Freyd and Scedrov (1990), by Bird and de Moor (1997)

and by Coecke (2011).

This chapter gives an overview of basic notions of category theory and of other techniques

rooted on such foundations, namely MPC and correct-by-construction programming tech-

niques, which the reader should be acquainted with, in order to follow the chapters that

follow.

2.1 categories

Before providing any de�nitions from category theory, it is essential to understand why all of

it is so important.

The abstract concept of a category captures a most important aspect ofany system or

theory, be it purely mathematical, physical, computational or otherwise: the fact that com-

positionality is at the heart of any successful piece of science or theory. This is very much in

line with current concerns in the computing sector. More and more complex systems are on

demand by the IT sector which cannot be designed and implemented from scratch � they

have to arise by composing existing systems. In other words, the laws behindcomposing

existing systems have become more important than the laws behind building the individual

systems themselves.

In this context, is no wonder that the main operation in a category is calledcomposition.

Such an operation has to be associative, in order to cater for arbitrarily complex system

construction. As the reader will soon verify, matrix multiplication, function / quantum-gate

composition, various kinds of orderings, etc. shall be instances of the generic concept of

composition.

6

2.1. Categories 7

Logic Computation

Categories

Figure 2.1.: Curry-Howard-Lambek.

Categories give rise to interesting and powerful constructs that �nd application in many

�elds, including mathematics, computer science and physics (Coecke, 2011). Such constructs

o�er an �internal�, abstract language that can be used to design generic systems that behave

alike. Quite often, expanding an existing formula written in such a language towards a more

complex domain (such as e.g. quantum physics) is achievable not by reworking the formula

but rather by keeping it unchanged and merely changing the category in which it is to be

interpreted.1

The connection between categories, logic and computation was �rst developed by Lambek

and is included in the so-called Curry�Howard�Lambek correspondence represented in �gure

2.1 (Abramsky and Tzevelekos, 2011).

categories and diagrams The de�nition of a category follows:

De�nition 2.1. Category � A category C is a mathematical system made of:2

1. A class of objects,obj(C).

2. For each pair of objectsA, B , there is a class of arrows,C(A, B), from object A to

object B (these are known as domain and codomain, respectively); writinga 2 C(A, B)

can be written a : A ! B or A
a //B with less symbols.

3. Usually referred to asmorphisms, arrows compose provided the codomain of the source

arrow is the domain of the target arrow.

4. Arrow composition is associative.

5. For every A, C(A, A) includes the identity arrow, which is the unit of composition

(Figure 2.2).

�

To illustrate these ideas it is important to visualise them through diagrams. Indeed, dia-

grams are regarded as perhaps the most useful tool for understanding categories (MacLane,

1971; Bird and de Moor, 1997; Abramsky and Tzevelekos, 2011). A recent approach by Coecke

1Thus the lemma: �Keep de�nition, change category� (Oliveira and Miraldo, 2016).
2See e.g. (MacLane, 1971; Awodey, 2010; Bird and de Moor, 1997; Manes and Arbib, 1986).

2.1. Categories 8

B

f

A idA

idB

A

B

f

Figure 2.2.: Diagram portraying the identity function.

B

f

A

Figure 2.3.: A pair of objects A (domain) and B (codomain) in some categoryC linked by an arrow
f : A ! B . As an example,f could be a function mapping an arbitrary group of students
(set A) to their student numbers (set B).

and Kissinger (2017) elaborates on the diagrammatic language of categories in a way such

that (it is claimed) triumphs over the actual (traditional) algebraic syntax. 3

Figure 2.3 depicts an arrow f : A ! B and the diagram of �gure 2.4 illustrates arrow

composition g � f . The identity is also characterised in this diagram, returning the same value

as its argument. Figure 2.5 gives the diagram of the unit law. This law shows similarity to

a + 0 = 0 + a = a and consequently, the identity is called theunit of the composition.

Morphism (arrow) composition is not necessarily sequential. Figure 2.6 shows three mor-

phisms independently �running in parallel�. So it makes sense to have a parallel composition

operator f
 g in which nothing is connected. There is an implicit associative law which gives

intuition on the importance of connectivity. To understand such laws one needs the concept

that follows.

De�nition 2.2. Isomorphism (Abramsky and Tzevelekos, 2011) � A morphism f : A ! B

in a category C is said to be anisomorphism i� there exists a unique morphism g : B ! A

such that

g � f = idA

f � g = idB

Morphism g is often referred to as theconverseof f . It follows that g is also an isomorphism,

with converse f . Then objects A and B are said to be isomorphic (or abstractly identical)

and one writesA �= B to tell this.

�

3Therefore, both notations will be present in this chapter.

2.1. Categories 9

C

g

B

f

A

g � f

1A

Figure 2.4.: Composition (in red) of arrows f and g and the identity (in blue) on object A. Contin-
uing with the example of the previous �gure, suppose setC represents the set of email
addresses of students and thatg is a function that receives the student's number and
returns the corresponding email. g � f is the composition of g and f that to a given
student's name gives its email address.

B

f

A idA A

f

idBB

f

Figure 2.5.: Diagram of the unit law (f � idA = f = idB � f).

f g h

Figure 2.6.: Three parallel (independent) processes running in parallel. Such parallel processes can
be anything, e.g. f may be a program playing music in the background,g may be a
program displaying something on a screen, andg may be a program accepting inputs
from the user. The diagram shows implicitly the associative law of parallel composition:
(f
 g)
 h = f
 (g
 h).

2.1. Categories 10

a

b

c

A

x

y

z

B

f

f

f

Figure 2.7.: Example of a non-injective function f .

functions (sets) So far, objects A, B and C have been left uninterpreted, as the

genericity of the category concept implied. One particular instantiation is to regard them

as sets. At school, one gets used to de�ning functionsf : A ! B where A and B are

sets. Such sets and functions form a category which is often regarded as the �mother� of all

other categories. Sequential composition is the expected:(f � g)(a) = f (g(a)) . The identity

function is the (unique) function that �does nothing�: for each object A there is an identity

function idA : A ! A that is the unit of composition: f � id = id � f = f .

In this category, parallel composition is written (f � g)(a, b) = (f (a), g(b)) (Abramsky and

Tzevelekos, 2011) assuming that sets of pairs exist in the category. This indeed happens and

such sets of pairs are usually known as Cartesian products:

A � B = f (a, b) j a 2 A, b 2 B g

For more than two sets, the pairs of Cartesian products generalize to tuples:

A1 � ... � An := f (a1, ...an) jai 2 A i g

A function f is said to be injective i� f (a) = f (b) , a = b and surjective i� for every

b 2 B there is somea 2 A such that b = f (a). Figure 2.7 depicts a function that is neither

injective nor surjective. Functions that are injective and surjective are said to be bijective.

The isomorphisms of this category are exactly the bijections. An example of isomorphism

(bijection) that will play a role in the sequel is

assocr((a, b), c) = (a, (b, c))

This isomorphism witnesses the associative law of parallel composition,

(A � B) � C �= A � (B � C)

which in this category is not an equality on objects.

2.1. Categories 11

relat ions (rel) Like the previous category, the objects of this category are also sets.

The di�erence therefore is on the morphismsR : A ! B , which now are binary relations

instead of functions: R � A � B (Coecke and Kissinger, 2017). Thus composition is de�ned

in a di�erent (in fact, more general) way:

(a, c) 2 (S � R) () 9 b2 B (a, b) 2 R ^ (b, c) 2 S (2.1)

That is, the sequential composition of two relations is a set of pairs such that there is an

elementbconnecting the relations. (Figure 2.8.) Note that every function (f) can be regarded

as a special case of a relation (R):

(a, b) 2 R () b = f (a)

In general, the symbol f denotes both the function and the corresponding relation (often

referred to as thegraph of the function).

This means that relations may happen to be functions, but in general relations add to

functions a non-deterministic feature (Abramsky and Tzevelekos, 2011). On the other hand,

this non-deterministic characteristic allows for the existence of converse relations in any case,

denoted by R� :

(a, b) 2 R () (b, a) 2 R�

For instance, f � = f (x, a), (x, b), (y, c)g in Figure 2.7.

In summary, Set � Rel (Abramsky et al., 2017) and the composition of functions portrayed

in Figure 2.4 is a speci�c case of relation composition (Coecke and Kissinger, 2017). The

identity for relations is the identity function.

It is a signi�cant remark that relations may be more interesting than functions. In fact,

relations admit a matrix calculus like linear maps, which is pertinent for computation and

quantum processing (Coecke and Kissinger, 2017). Furthermore, the category of relations

has proved to be a solid basis for the mathematics of program construction in classic and

quantum programming (Zeng, 2015).

matrices (mat k) This category is de�ned over a �eld K that may be for instance

that of the real or complex numbers. The objects are natural numbers (n). Each morphism

n M //m in the category describes a matrix with n columns andm rows. If the input n or

the output m is 1 then M is called a column vector or row vector, respectively (Coecke and

Kissinger, 2017).

Composition in this category corresponds to matrix-matrix multiplication (MMM). Fur-

thermore, identity morphisms are the diagonal matrices (n � n) (Abramsky and Tzevelekos,

2011).

2.1. Categories 12

C

S

B

R

A

S � R

Figure 2.8.: Composition S � R.

Categories of matrices have been used in probabilistic programming. In this context, Murta

and Oliveira (2015) study programs with probabilistic behaviour caused by faulty hardware.

Like relations, matrices are commonly associated with linear maps4. However, these are more

general (Coecke and Kissinger, 2017).

init ial and terminal objects Some objects in a category may have special prop-

erties. Such is the case of so-calledinitial and terminal objects.

De�nition 2.3. Initial and Terminal Objects (Abramsky and Tzevelekos, 2011) � Object 0

is said to be an initial object of category C if there is a unique arrow from 0 to every other

object A, which is written as ?A : 0 ! A. Object 1 is said to be a terminal object of category

C if there is a unique arrow from every other objectA to 1, which is written as !A : A ! 1

�

The initial and terminal objects are represented by the diagrams of �gure 2.9. These

concepts are dual, meaning that an initial object in a categoryC represents a terminal object

in the opposite categoryCop. The opposite categoryCop is de�ned by simply inverting the

direction of the arrows in C: Cop(A, B) := C(B , A).

The initial object of category Set is the empty set while the terminal object is any singleton

set (a set with only one element) (Abramsky and Tzevelekos, 2011). In the categoryRel of

relations, the empty set is both the initial and terminal object (Bird and de Moor, 1997). In

Mat k the natural number 0 is also initial and terminal.

Moreover, initial and terminal objects can be seen as the limit of the datatype spectrum

(see �gure 2.10) (Oliveira, 2008).

products and coproducts Composition has been presented as the standard way

to combine morphisms in a category. However, some categories o�er other ways to connect

morphisms, known as products and coproducts. These constructs perform the pairing of two

4This category is also used to describe states and e�ects, as described in the following chapter.

2.1. Categories 13

A

?A

0

1

!A

A

Figure 2.9.: Diagrams of the initial object and terminal object, respectively (Bird and de Moor, 1997).

A

!A

0

f B

!B

1

?A

A f B

?B

Figure 2.10.: Initial datatype function fusion (left) or �nal datatype (right) fusion.

arrows, with the same domain (in the case of products) or the same codomain (in the case of

coproducts).

As already seen, in theSet category, the Cartesian product of setsA and B is the set of

ordered pairs,

A � B = f (a, b) ja 2 A ^ b 2 B g

wherefrom each element can be retrieved:

� 1(a, b) = a

� 2(a, b) = b

Functions � 1 and � 2 are calledprojections:

A � 1 � A � B � 2�! B

In general:

De�nition 2.4. Product (Awodey, 2010) � In a category C, the product of object A and

object B is the object A � B with the morphisms � 1 : A � B ! A and � 2 : A � B ! B

satisfying the following universal property:

To any given object X in f : X ! A and g : X ! B , there is a unique arrow

from X to A � B , f O g such that the diagram in �gure 2.11 commutes.

In symbols:

k = f O g ,

8
<

:

� 1 � k = f

� 2 � k = g
(2.2)

2.1. Categories 14

A � B

f O g

X

� 1 � 2A B

f g

Figure 2.11.: Product diagram illustrates the cancellation properties � 1 � (f O g) = f and � 2 � (f O g) =
g.

f O g is read �f split g� or the pairing of f with g.

�

Therefore, each morphismk : X ! A � B splits uniquely into a pair of morphisms, of types

X ! A and X ! B , expressing the homset isomorphism(X ! A � B) �= (X ! A) � (X !

B). This captures the well-known bijection, in sets, between pair-valued functions and pairs

of functions.

Mat k is an example of category with products, in which the universal property is written

as

X =

2

4 M

N

3

5 =

8
<

:

� 1 � X = M

� 2 � X = N

(Oliveira, 2017). The notation

2

4 M

N

3

5 represents the vertical stacking of the matricesM and

N , with the same number of columns, sayp. Matrices � 1 and � 2 are the fragments of the

identity matrix such that

2

4 � 1

� 2

3

5 = id.

De�nition 2.5. Coproducts(Abramsky and Tzevelekos, 2011) � In a category C, the coprod-

uct of the A and B is the object A + B and the pair of morphisms i 1 e i 2, called injections,

A i 1�! A + B i 2 � B

such that, for any X and

A
f
�! X

g
 � B

there exists a unique morphism[f , g] : A + B ! X that commutes the diagram of �gure 2.12.

Thus the universal property:

k = [f , g] ,

8
<

:

k � i 1 = f

k � i 2 = g
(2.3)

2.2. Functors 15

A + B

[f , g]

X

i 1 i 2A B

f g

Figure 2.12.: Coproduct. This diagram illustrates the cancellation properties [f , g] � i 1 = f and
[f , g] � i 2 = g.

�

The morphism [f , g] is sometimes termed thecopairing of f and g. Like initial and terminal

objects, the product and coproducts are unique up to isomorphism, recall de�nition 2.2.

2.2 functors

Because the type of the objects is not the only thing to take into account, the lemma of

category theory is:

The morphisms are what really matters.

Therefore, it is possible to have homomorphisms between categories (Awodey, 2010).

De�nition 2.6. Functor (Abramsky and Tzevelekos, 2011) � A functor F : C ! D between

categoriesC and D is de�ned by two mappings:

1. object-map: this assigns an objectFA of target category D to every object A of source

category C.

2. arrow-map: this assigns an arrowFf : FA ! FB of categoryD to every arrow f : A !

B , in such a way that identity arrow and composition are preserved:

F (idA) = idF A (2.4)

F (g � f) = Fg � F f (2.5)

Since the two component mappings of functorF preserve domain and codomain of every pair

of objects A and B of C, one has:

F A,B : C(A, B) ! D (FA, FB)

�

2.3. Monads 16

1 + (1 + C)

[i 1, id]

1 + C

id + g 1 + B f A

g B

g � f

Figure 2.13.: Diagram with composition g � f and extension ofg.

T (T C)

�

T C

T g T B f A

g B

g � f

Figure 2.14.: Monadic composition � general case.

As any other homomorphism, functors can be composed � (F � G)f = F (Gf), and for

any category C there exists an identity functor: id : C ! C (Bird and de Moor, 1997).

2.3 monads

So far we have handled morphism that map from objectsA to B in the same category, and

morphisms that map objects from one category to another (functors). Besides these, in

computing one also has to handle situations where the output of one morphism (the source)

is more elaborate than the input of another (the consumer) in a sequential composition. For

instance, when testing the head of a list one needs to handle the exceptional case raised by

the empty list. An abstract way to represent exceptions of this kind is

f : 1 + A B

where the unique inhabitant of object 1 signals the exception.

The sequential composition of functions with type A ! 1 + B has a problem, cf. eg.f :

1 + B A and g : 1 + C B . The composition g � f calls for the extension of g. This is

depicted in �gure 2.13.

To achieve generality, de�ne functor T X = 1 + X and redraw the diagram using T , as

displayed in �gure 2.14, where the composition is given by:

g � f = � � T g � f

2.4. Recursion 17

A

x

B g FB

f FA

Fx

Figure 2.15.: Program structure.

Functor T is a special case of amonad, and this monadic composition is calledKleisli com-

position. A monadic arrow f : T Y X represents a function with an output of type Y

wrapped by the (computational) �e�ect� embodied in T .

The morphism � � T g is referred as the (monadic) extension of g. The important role is

played by � : T X T 2X , a suitable polymorphic function called multiplication of monad

T . Arrow u : T X X is the monad's unit , which injects data inside the e�ect T .

Monads play a major role in today's computer programming. Kleisli arrows of type

A
f //T B correspond to particular morphisms in other categories, depending onT . In

particular, binary relations, Markov chains and matrices, in general, can be regarded as Kleisli

arrows for suitable monadsT . This correspondence, labelledKleisli correspondence, will be

very helpful in the sequel.

2.4 recursion

One of the main advantages of ordinary mathematics is the ability to formulate problems by

equations and obtain solutions for the problems by solving the corresponding equations. For

instance, the problem �is there a natural number that is the successor of its half?� can be

captured by the equation x = 1 + x
2 . It has solution x = 2 since2 = 1 + 2

2 .

In any category-based approach, morphisms play the major role. So one may wonder what

the categorial analogous to some equationx = f x would be. Sincex is a morphism, f has to

be a functor, sayF in �gure 2.15. To express the equation one needs to relateA, the source

of x, with FA, the source ofFx, and similarly for B . Let f : FA ! A and g : FB ! B

be morphisms that establish such relationships. Then the category counterpart of equation

x = f x will be

x � f = g � Fx (2.6)

Given a functor F , a morphism with type X FX is called anF-algebra. Sof and g above

are F-algebras and the diagram shows that the role ofx is to transform F-algebra f into

F-algebra g. The branch Fx expressesrecursion in the sense that x has to run �inside� the

structure of F to carry out such a transformation.

2.4. Recursion 18

As often happens in mathematics in general, equation (2.6) may happen to have no solution

at all. There are, however, situations where solutions are guaranteed. This is the case when

algebra f is an isomorphism. Take for instanceFX = 1 + X and A = N 0, the natural

numbers. Then de�ne f : FN 0 ! N 0 by

f = [zero, succ]

where zero_ = 0 and succ n = n + 1. Algebra f is an isomorphism (bijection) because (a)

every natural number either is 0 or the successor of another natural number (f is surjective);

(b) 0 is never the successor of another natural number (f is injective). Algebra f can be

recognized as the well-known Peano algebra supporting the axiomatic de�nition of the natural

numbers.

Let � denote one such isomorphismf regarded as standard, say� = [zero, succ], and let

this be �xed. Then the standard solutions to equation (2.6) are parametric on algebrag. It

turns out that, for each g, there is a unique solution to the equation, which is denoted byLgM

and called the catamorphism of algebra g (�gure 2.16):

LgM� � = g � FLgM

The uniqueness of this solution is captured by the universal property:

x = LgM , x � � = g � Fx (2.7)

from which the equality just above is obtained by letting x = LgMand simplifying. This

property is known as the cata-cancellation law.

The categorial model for recursion explained just above is very powerful and generic (Bird

and de Moor, 1997). Catamorphisms are just one particular class of solutions to categorial

recursive equations such as (2.6). In general, anyx that is a solution to (2.6) is said to be

a homomorphism from algebra f to algebra g, in fact a morphism g fxoo in the category

whose objects areF-algebras and whose morphisms areF-homomorphisms. Some such al-

gebras� may happen to beinitial objects in such category, meaning that there is a unique

homomorphism from � to any given algebra g. Such unique homomorphism is written LgM.

As an immediate consequence of such uniqueness, one has:

L� M= id (2.8)

since id is an omnipresent morphism. Therefore, the �genetic material� of the identity cata-

morphism is the initial algebra � . This corresponds to the re�ection property of catamor-

phisms. Because� is an isomorphism, law (2.6) can be written with its inverse (� �):

LgM= g � FLgM� � �

2.5. Allegories 19

A

LgM

B g FB

� FA

FLgM

Figure 2.16.: Catamorphisms.

N 0

f

B g

�= 1 + N 0

id + f

1 + B

[zero, succ]�

[zero, succ]

Figure 2.17.: Catamorphism representing the Peano Algebra.

Returning to the Peano algebra example, these laws result in the catamorphism of �gure

2.17.

In this example the catamorphism is:

f = LgM, f � [zero, succ] = g � (id + f)

The morphism g is a copairing [g1, g2]. When writing a program following this diagram,

g1 : 1 ! B corresponds to the program instruction to stop andg2 : B ! B is the program's

instruction to continue iterating.

2.5 allegories

relat ions and allegories Relations increase the expressive power of functions,

in the sense that they can be used to describe nondeterministic computations and de�ne

problems in terms of converses of other problems. While functions can be compared for

equality only, relations can be tested for inclusion. This means that the homsets of theRel

category are more than just sets: they are partially ordered sets. Categories whose homsets

are enriched by some algebraic structure are calledenriched categories. One particular branch

of enriched categories abstracts the ordered features ofRel . Such categories have become

known as allegories.

De�nition 2.7. Allegory (Freyd and Scedrov, 1990) � An allegory A is a category enriched

with extra operators inspired by the category Rel . While in a standard category the homsets

2.5. Allegories 20

are sets, in an allegory the homsets are partially ordered sets. This means that besides target,

source, composition, and identity, in allegory morphisms can be compared by a partial order

� . Moreover, allegories also allow for converse(_) � morphisms and morphism intersection

(\) and union ([). �

part ial order Partial orders in allegories compare homomorphisms with the same

source and target. In the Rel allegory, where a relationR : A B is a subsetR 2 A � B ,

the concept of inclusion in relations is de�ned by:

R � S , (8y, x : yRx) ySx) (2.9)

intersection In the Rel allegory, for every homomorphism pairR, S : A B , their

intersection, R \ S : A B , is de�ned by:

X � (R \ S) , (X � R) ^ (X � S)

Similarly,

(R [S) � X , (R � X) ^ (S � X)

converse In an allegory, the converse of a morphismR : A ! B is the morphism

R� : A ! B such that the following properties hold (Bird and de Moor, 1997):

1. (R�) � = R

2. R � S , R� � S�

3. (R � S) � = S� � R�

In consequence:

id � = id (2.10)

In the Rel allegory, converse is de�ned by:

yRx , xR � y (2.11)

So converse inRel implements the passive voice of natural language. A tangible example

could be the converse ofJohn loves Mary, which is Mary loves� John.

2.5. Allegories 21

binary relation taxonomy Similar to functions, relations may be divided into

di�erent classes. For instance, atotal function 5 and partial functions 6 can be transposed to

the relational algebra by the transpose operatorL and G, respectively, which are de�ned by

the universal properties:7

f = L R , (bRa , b 2 fa) (2.12)

f = GR , (bRa , (fa = Just b) (2.13)

In order to avoid confusion with partial order and total orders, relation algebra usesentire

for total and simple for partial relations.

Recall the identity morphisms id, from which some terminology arises:

De�nition 2.8. An (endo)relation R : A ! A is re�exive i� idA � R and core�exive i�

R � idA �

The transitive concept de�nes that R is transitive i� R � R � R hold. Combining these no-

tions results in preorders: re�exive and transitive relations. Partial orders are anti-symmetric

preorders, i.e.R \ R� � id holds.

To understand the whole taxonomy of binary relations given in �gure 2.18 it is important

to de�ne the kernel and image of a relation.

De�nition 2.9. The kernel of a relation is de�ned by

ker R = R� � R

and the image is kernel's dual, that is:

img R = ker (R�) or img R = R � R�

�

These two notions lead to some terminology: a relation isentire if its kernel is re�exive,

simple i� its image is core�exive. By duality, a relation is surjective i� R� is entire and

injective i� R� is simple. This terminology is summarized in table 2.1.

In this context function describes a relation simple and entire. On other hand,f is a

bijection i� img f = id ^ id = ker f .

It is also useful to mention that these relations may be seen as boolean matrices. In this

case afunction has exactly one1 in every column, and abijection has one1 in every column

5By total is meant a function where each value of the domain is assigned to a value (Abramsky and
Tzevelekos, 2011).

6By partial functions is meant functions which are unde�ned for some arguments (Oliveira and Rodrigues,
2004) as the head function example seen in section 2.3.

7Details in (Oliveira and Rodrigues, 2004).

2.6. Summary 22

Binary Relation

entireinjective simple surjective

functionrepresentation abstraction

injection surjection
bijection

(isomorphism)

Figure 2.18.: Binary Relations taxonomy.

Re�exive Core�exive

ker R entire R injective R
img R surjective R simple R

Table 2.1.: Terminology summary.

and in every row. Functions are a special case of relations that satisfy the so-called shunting

rules:

f � R � S , R � f � � S (2.14)

R � f � � S , R � S � f (2.15)

from which the following equivalences hold:

f � g , f = g , g � f (2.16)

2.6 summary

This chapter presents a minimal collection of mathematical notions that provide foundations

for the rest of the dissertation. The main notion is that of a category, which provides an

abstract way to think of and reason about programs. Diagrams play a central role in categorial

reasoning. These notions were accompanied by examples that help to realise their power and

to observe the freedom of dealing with di�erent types of data.

Another concept introduced in this chapter is that of a functor. Functors connect categories

among themselves. This concept is followed by that of a monad, which enables programs that

manage inputs and outputs with di�erent levels of complexity.

The chapter also introduced catamorphisms, which are a categorial device for describing

recursion. The �nal section analysed allegories, a brand of enriched categories that generalize

the category Rel of relations.

2.6. Summary 23

The next chapter addresses quantum computing. Because this model of computation re-

quires further abstraction and of a di�erent nature, such foundations are not part of this

chapter.

3
Q U A N T U M C O M P U T I N G

This chapter introduces the quantum computing paradigm on the basis of the terminology

already presented in the previous chapter. Having in mind the basic laws of the quantum com-

puting will allow the reader to easily debunk some of the widespread myths about quantum

computing, while understanding the constraints of quantum programming.

It is also important to settle some conventions, notations and concepts of quantum com-

puting. Among these, one of the major postulates is the request for reversibility, a notion

already introduced in the background provided by the previous chapter.

3.1 overview of quantum theory

In the beginning of the twentieth-century physicists studied the dichotomy between mat-

ter and wave, assuming they were two di�erent concepts that would not overlap. However,

throughout the century considerable evidence piled up exposing situations within this line of

thought, e.g. the photoelectric e�ect, black-body radiation and the Compton e�ect. 1

By that time, it was vital to �nd a new theory in which light and matter presented both light-

like behaviour and matter-like behaviour. Setting matter and waves apart wasn't acceptable

at the quantum level (Yanofsky and Mannucci, 2008).

quantum state Yanofsky and Mannucci (2008) start the study of quantum states by

considering an arbitrary subatomic particle, that cannot be detected on a particular position

but rather within the range of some set of positionsf x1, x2, ..., xng, all equally spaced by some

�x . For simplicity of presentation, such a set of possible states can be regarded as �nite.2 This

means that one can only measure theprobability of the particle being found in a particular

such position.

1For relatively recent accounts of these advances see e.g. the textbooks by Yanofsky and Mannucci (2008)
and Gasiorowicz (2003).

2In reality, this set is in�nite and so �x ! 0.

24

3.1. Overview of quantum theory 25

Figure 3.1.: Diagram representing a state.

The next step is to describe such a probabilistic state by ann-dimensional (column) vector.

A particle with 100% probability of being in position x i is described by the Dirac so-called

�ket� notation jx i i , and so to eachn state there is a column vector:

jx1i !

2

6
6
6
6
6
4

1

0

...

0

3

7
7
7
7
7
5

jx2i !

2

6
6
6
6
6
4

0

1

...

0

3

7
7
7
7
7
5

(...) jxn i !

2

6
6
6
6
6
4

0

0

...

1

3

7
7
7
7
7
5

These are eigenvectors that constitute the canonical baseCn of the system.

Note that this example handles a quantum particle and such particles do not only have the

probabilistic behaviour but also a wave-like behaviour. This duality could be represented by

real numbers but is not e�cient. A better option is to write the states with complex numbers,

where the modulus of the complex number calculates the probabilities and its argument

expresses the phase di�erence.

While this mathematical system would be enough to describe a classic system, this is

where these systems diverge from quantum systems. In a quantum system,any vector in

Cn is a valid physical state of the particle. Therefore, let j i be an arbitrary state with

the linear combination of the eigenvectorsjx1i , jx2i , ..., jxn i with their complex amplitude,

f c1, c2, ..., cng.

j i = c1jx1i + c2jx2i + ... + cn jxn i

Assuming such a standard basis, such an arbitrary state may be represented by the vector:

j i !

2

6
6
6
6
6
4

c1

c2

...

cn

3

7
7
7
7
7
5

This is called a superposition of eigenstates (Gasiorowicz, 2003) or generally called superposi-

tion of states (Yanofsky and Mannucci, 2008).

In the example of the position of a particle, this superposition describes the many places

a particle can be at the same time. The complex amplitudes,ci , represent the �degree� in

which the particle is in which state.

3.1. Overview of quantum theory 26

� �

Figure 3.2.: Diagram representing an e�ect (left) and a bracket (right).

It is easy to imagine these vectors framed in a category of matrices and consequently

described by diagrams (Coecke and Kissinger, 2017), as for instance in �gure 3.1. This shows

not only a ket but also its dual process, callede�ect by Coecke and Kissinger (2017) and

written h� j in standard quantum notation � a � bra�. A braket, i.e. the merging of the two,

h� j i , corresponds to the inner product of two vectors (see �gure 3.2).

An inner product space is a vector space equipped with inner products (Nielsen and Chuang,

2011). A Hilbert Space is an inner product space of �nite-dimensional complex vector spaces.

In terms of process theory, Hilbert spaces are the objects of the category of linear maps

(Coecke and Kissinger, 2017).

observable and measurement It is possible to take the probability of �nding the

particle in a state x i after observing it:

p(x i) =
jci j2

jj ij 2 =
jci j2P
j jcj j2

, p(x i) 2 [0, 1]

A so-called observablegives the possibility to ask the state of a system. This question will

admit a set of answers and corresponding probabilities. On the other hand, measuring corre-

sponds to running an observable. In this case, not only the question is made to the system

but also the system gives a de�nite answer. Both action, observe and measure, follow a set

of axioms (Yanofsky and Mannucci, 2008):

Axiom 3.1. A physical observable is analogue to a Hermitian operator:3

�

This axiom forces the observable to be a linear operator. As a result of this, the observable

W applied to a state j i modi�es the state to Wj i . Furthermore, the eigenvalues of a

Hermitian operator are all real, which leads to:

Axiom 3.2. The only acceptable values to be observed and that can be a result of measuring

a state are eigenvalues of the Hermitian operator associated with a physical observable. The

3A square matrix is called Hermitian if is self-adjoint: Ay = A (Yanofsky and Mannucci, 2008), where Ay

is the conjugate transpose A
T

.

3.1. Overview of quantum theory 27

eigenvectors of the Hermitian operator also form the basis for the state space.

�

With this, it is reasonable to conclude that the set of values that can answer the observable

question are provided by the eigenvalues of the observable.

In terms a measure there is a clear contrast between classical and quantum systems. In

classic systems, a measurement does not interfere with what is being measured and the result

is predictable. As seen above, the states of a quantum system are modi�ed by measuring and

this is a non-deterministic process of which it's only possible to predict a probability.

Finally, one last axiom:

Axiom 3.3. Let W be an observable and be an arbitrary state. If the measurement result

of W is an eigenvalue� , then the state after measuring will always be the eigenvector corre-

sponding to � .

�

dynamics All systems considered above are not time-dependent. Concerning quantum

dynamics the axiom to keep in mind is:

Axiom 3.4. (Yanofsky and Mannucci, 2008) � The evolution of a quantum system (that is

not an observable nor a measurement) is given by unitary operators or transformations.

�

Unitary transformations 4 are a group of transformation that are preserved by converse and

composition, i.e. the product of two unitary matrices is also unitary and the inverse of the

unitary matrix is still a unitary matrix.

quantum system assembly Systems always have more than one particle. Putting

particles together is achieved viatensor products:

Axiom 3.5. (Yanofsky and Mannucci, 2008) Let Q and Q0 be two quantum systems, char-

acterised by the vectorsV and V 0, respectively. When systemsQ and Q0 are merged the

resulting system is described by the tensor productV
 V 0.

�

Extending the example of the position of a particle to the positions of two particles, the

set f x1, x2, ..., xng represents possible positions of the �rst particle and the setf y1, y2, ..., ym g

represents possible positions of the second particle.

The arbitrary superposition state is now written as:

j i = c1,1jx1i
 j y1i + ... + ci ,j jx i i
 j yj i + ... + cn,m jxn i
 j ym i

4The de�nition of the unitary matrix only appears when in applied in chapter 4 (i.e. de�nition 4.2).

3.2. Bit vs qubit 28

Notation Description Example

z* complex conjugate of the complex number z (1+i)* = (1-i)
j i ket
h� j bra
h j� i inner product

j i
 j � i
or
j i j � i

tensor product

"
a b
c d

#

"
1 2
3 4

#

=

=

2

6
6
6
6
4

a

"
1 2
3 4

#

b

"
1 2
3 4

#

c

"
1 2
3 4

#

d

"
1 2
3 4

#

3

7
7
7
7
5

A � Complex conjugate of the A matrix
AT Transpose of the A matrix
Ay Hermitian or adjoint of the A matrix

h� jAj i
inner product of � amd Aj i
or
inner product of Ayh� j and j i

Table 3.1.: Useful information regarding quantum mechanics (Nielsen and Chuang, 2011; Selinger,
2004).

This can be scaled ton systems:

V 1
 V 2
 ...
 V n

3.2 bit vs qubit

The previous section gives good intuitions on the di�erences between the classic and the

quantum computer systems. Standard computers are based on a minimal, indivisible unit of

information, called the bit.

De�nition 3.1. (Coecke and Kissinger, 2017; Yanofsky and Mannucci, 2008) Abit is the

unit of information, characterized by:

1. it accepts two states,0 and 1;

2. it can be subject to any function;

3. it can be read without any obstruction and the act of reading does not produce any

change to the state.

�

3.2. Bit vs qubit 29

'

�

� x

� y

� z

j0i

� � z

j1i

j i

Figure 3.3.: Bloch Sphere representing a qubit (Nielsen and Chuang, 2011).

De�nition 3.2. (Nielsen and Chuang, 2011; Coecke and Kissinger, 2017) The quantum bit,

or qubit, is characterized by:

1. it accepts every state in the Bloch sphere (see �gure 3.3);

2. it can only be subject to rotation on the sphere, i.e. an operator applied to a qubit must

be a unitary transformation;

3. to measure a quantum bit requires an invasive process that destroys the previous state.

�

The traditional way to represent a bit holding 0 in a quantum system is the ket notation

j0i , which is characterised by the vector

"
1

0

#

; so the bit holding 1 is represented byj1i and

characterised by the vector

"
0

1

#

. A qubit is a superposition of such two states:

c1j0i + c2j1i (3.1)

Pairing qubits may result in states that are either separableor entangled. Tensor product

always produces separable quibit pairs. For instance, if qubitq1 in the state c1j0i + c2j1i and

qubit q2 in the state c0
1j0i + c0

2j1i are paired up, then the combined state is:

q1
 q2 = c1c0
1j00i + c1c0

2j01i + c2c0
1j10i + c2c0

2j11i

However, a qubit-pair may happen to be in anentangledstate (Selinger, 2004), meaning that

it cannot be written as above. Entanglement is one of the most interesting aspects of quantum

systems, and one that cannot be found in classical systems. The representation of the two

3.3. Operations 30

�

(a) Separable states.

(b) Entangled states - cup (the dual of cup is re-
ferred as cap.).

Figure 3.4.: Combination of states.

situations, separable and entangled, in the notation of (Coecke and Kissinger, 2017) is given

in �gure 3.4.

3.3 operations

As stated in de�nition 3.2, a qubit can only be operated by a unitary transformation , and

the same happens concerning multiple qubit systems. Classical isomorphisms, now regarded

as transformations between two Hilbert spaces, form a special case of unitary (bijective)

transformation that is both quantum and classic (Zeng, 2015).

Just like classic computation has its standard gates, e.g.AND , NOT and XOR (Yanofsky

and Mannucci, 2008), quantum computation also has its own set of standard gates (Selinger,

2004):

� x =

"
0 1

1 0

#

; � y =

"
0 � i

i 0

#

; � z =

"
1 0

0 � 1

#

H =
1

p
2

"
1 1

1 � 1

#

; S =

"
1 0

0 i

#

; T =

"
1 0

0
p

i

#

CNOT =

"
I 0

0 X

#

=

2

6
6
6
6
6
4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

7
7
7
7
7
5

� x and CNOT are classic isomorphisms, the latter obtained fromXOR by copying one of its

inputs to the output. As will be seen in chapters to follow, this is a standard way of converting

non-reversible operators into reversible ones, a topic that has received considerable attention

(Mu et al., 2004).

3.4. Density matrix 31

c1,1j00i + c1,2j01i + c2,1j10i + c2,2j11i

c1,1j00i + c1,2j01i c2,1j10i + c2,2j11i

c1,1j00i c1,2j01i c2,1j10i c2,2j11i

measureq1 = 0 measureq1 = 1

measureq2 = 0 measureq2 = 1 measureq2 = 0 measureq2 = 1

Figure 3.5.: E�ect of measuring two (entangled) qubits.

3.4 density matrix

Selinger (2004) draws the picture shown in �gure 3.5 to explain the e�ect ofmeasuring two

normalised, entangled qubits. Assuming normalised states, the probability of having the

initial state collapsing to c1,1j00i + c1,2j01i when the �rst bit is measured is jc1,1j2 + jc1,2j2.

The other probabilities are achieved in a similar way. Finally, the probability of observing

each state is:

p(00) = jc1,1j2

p(01) = jc1,2j2

p(10) = jc2,1j2

p(11) = jc2,2j2

Not all information in the system is accessible to the observers.

When a quantum state is exactly known it is called pure state. Otherwise, it is called

a mixed state (Nielsen and Chuang, 2011) and it corresponds to a (classical) probability

distribution on quantum states (Selinger, 2004). Sincepure and mixed statesare descriptions

of the observers' knowledge, it is important to note that:

ˆ a system may be in di�erent mixed states, depending on the viewpoint of the observers;

ˆ a system is always in a pure state; however, this state may be unknown.

While pure states can be represented by vectors, as seen already,mixed states call for a

matrix representation of a special kind, calleddensity matrix:

De�nition 3.3. (Selinger, 2004) A hermitian matrix A is a density matrix i� tr A = 1. 5

�

5

De�nition 3.4. (Weisstein, 2018) trace is the sum of the diagonal elements: trA ,
P n

i = 1 aii

3.5. Peculiarities of quantum computing 32

Let a pure state be represented by the usual column vectoru. The corresponding density

matrix representation will be uuy. Di�erent mixed states can be represented by the same den-

sity matrix. Among normalised pure quantum states the representation is, however, unique.

Density matrix notation provides a real advantage when representing mixed states, since a

mixed state is simply characterised by a linear combination of the density matrices of the

pure components.

3.5 peculiari t ies of quantum computing

The importance of quantum computing relies upon its possible applications. As is known, an

increasing number of problems are known to be impossible to solve using classical computing.

These problems are not impossible to compute in theory but the resources given by a classic

computer are not enough to solve these problems (Nielsen and Chuang, 2011).

Quantum computing o�ers new algorithms to solve such problems. Two well-known exam-

ples are (Nielsen and Chuang, 2011):

SHOR'S ALGORITHM � this algorithm, also called the Shor's quantum Fourier transform,

is used to solve factoring and discrete logarithm problems.

GROVER'S ALGORITHM for quantum search.

These two algorithms quantum algorithms increase in an impressive way the speed with which

some problems are solved e.g. breaking RSA (Nielsen and Chuang, 2011).

Besides quantum algorithms, the quantum computing model o�ers additional mechanisms

or procedures, namely (Vicary, 2013):

TELEPORTATION � the state of an arbitrary qubit is transferred from one location to

another; (Yanofsky and Mannucci, 2008)

DENSE CODING allowing to send two bits of information in a single qubit (Nielsen and

Chuang, 2011).

If used properly, these properties may have a huge impact in several �elds such as cryptography

or medicine.

A striking peculiarity of quantum systems is the no-cloning property. This is an example

of a property that is usually taken as granted in any classic physical system and is no longer

admitted in quantum systems. In a classical program or circuit one can always copy bits or

any other kind of information (e.g. this document can be copied and sent to other machines).

In quantum systems this is no longer possible. This quantum particularity is named the

no-cloning theorem. Proofs of this theorem can be found in the literature, e.g. (Nielsen and

Chuang, 2011) or (Coecke and Kissinger, 2017), using string diagrams in the latter case.

3.6. Computing versus physics 33

Not being able to clone information may seem like an inadequate feature, but in fact it turns

out to be the basis of quantum cryptography. In quantum computing, stealing a secret erases

the original, meaning that a thefts or intruders can be detected. Quantum programming

languages have been studying ways to add this feature to their semantics (Selinger, 2004).

3.6 computing versus physics

Quantum computing is a clear intersection between computer science and (quantum) physics.

It is not, however, the �rst time the two disciplines intersect each other. One such other inter-

section is reversible computing, bringing thermodynamics and information theory together.

Reversible computing is in some sense pre-quantum computing, taking into account that every

reversible process is unitary, but still classical.

Reversibility promises to reduce energy costs in computing by increasing the injectivity of

computations. A program is reversible if the input may be recovered by the information in

the output. According to Landauer law (Landauer, 1961) it is possible to decrease the cost

of computation by using reversibility. The core of the Landauer principle is a study of the

computational processes which reveal that energy and heat are lost due to erasing information,

and not as a result of writing information.

Following this line of thought, Bennett (1973) explores the possibility of a reversible com-

puter which does not erase information and consequently does not lose energy. This lead to

the study of reversible circuits and programs (Yanofsky and Mannucci, 2008). However, such

low-power designs have been struggling with increased complexity associated with reversibility

and the need to temporarily store a substantial amount of data.

This raises obstacles to the implementation of such computation principles at an industrial

level because industry requirements prioritise size over energy e�ciency. Although there is

already an extensive study to avoid these problems when increasing injectivity (Dueck and

Maslov, 2003), and consequently creating reversible programs, the general feeling is that the

main usage of reversible computation will be in quantum computation.

3.7 summary

This short chapter is aimed at introducing the quantum model of computation and its pecu-

liarities. First of all, it is clear that quantum states, quantum gates and measures can be seen

as matrices, and so quantum programs can be easily described through categories of matrices.

Such ideas are not new, as there have been studies like those by Zeng (2015) and Vicary

(2013) that use categorial mathematics (with categories of sets, relation and topology) to

analyse the semantic of known quantum algorithms.

3.7. Summary 34

It is also important to mention that the despite the marvellous capacities of quantum

computing, superposition does not mean that every state can be tested at the same time.

Moreover, there are quantum constraints of reversibility and the impossibility to copy a state

that must be taken into consideration (Ying, 2010).

4
C A L C U L AT I N G Q U A N T U M P RO G R A M S

Standard (classic) programming theory relies on a notion of programre�nement . The starting

point typically is a so-called speci�cation , which indicates the expected behaviour of the

program to be developed with no indication of how outputs are computed from the inputs.

So, �vagueness� is a chief ingredient of a good speci�cation, giving freedom to the programmer

to choose a particular algorithmic solution.

Re�nement is the process of deriving one such algorithmic solution from the speci�cation. A

program re�nes another insofar as it increases its �de�nedness�, measured not only in terms

of reducing the vagueness of the speci�cation but also increasing the domain of de�nition

(Oliveira and Rodrigues, 2006). In the limit situation, a re�nement is a function f (Figure

4.1) such that

S ` f , f � � S � S (4.1)

holds.1 In words: �speci�cation S is re�ned by implementation f i� function f , once restricted

to the domain of de�nition of S, is a part of S� .

From (4.1) one clearly sees that (nondeterministic) programinclusion (P � Q) is the

ordering underlying program re�nement calculi, notably in the Algebra of Programming (Bird

and de Moor, 1997). However, programs derived in this way show no concern for reversibility,

as can be seen from the basic principles described above.

S
f

�S

Figure 4.1.: Program from speci�cation.

1� S denotes the domain of the speci�cation, that is, the range of inputs for which the program has to
deliver an output.

35

4.1. Increasing injectivity 36

a

b

c

A

x

y

z

B

f

f

f

� a

b

c

A

x

y

z

B

f

f

f

Figure 4.2.: Injectivity (pre)order.

Because quantum programs are always reversible (recall section 3.3), any method for deriv-

ing quantum programs has to be concerned, in some way or another, with functionreversibility.

The following section addresses this topic.

4.1 increasing injectivi ty

Recall that a bijection (Figure 2.18) is a function that is both injective and surjective. Bi-

jections and reversible functions coincide: they are the isomorphisms of the category of sets.

Therefore, one needs to �nd an ordering on functions capturing its �injectiveness� (�gure

4.2).2 As can be found in any school book on discrete maths, a function is injective i�

f x = f x 0) x = x0

which abbreviates to

f � � f � id

as seen in chapter 2. Moreover,g is less injective than f is captured by the pre-order

g � f , f x = f x 0) g x = g x0

which in turn simpli�es to:

g � f , f � � f � g� � g

In the sequel, the commitment is in exploiting the injectivity preorder,3

R � S , ker S � ker R

2Surjectiveness does not need to be handled explicitly because our implementations will be endo-functions
(f : A ! A) where A is �nite and an injective endo-function a �nite set is surjective.

3Recall from de�nition 2.9 that ker R = R � � R is called the kernel of relation R.

4.1. Increasing injectivity 37

as are�nement ordering guiding programmers towards more and moreinjective computations.

This ordering is rich in properties.4 For instance, it is upper-bounded by relation pairing,

R O S � X , R � X ^ S � X (4.2)

an operator de�ned in the expected way:

(b, c) (R O S) a , b R a ^ c S a

In the case of functions:

(f O g) a = (f a , g a) (4.3)

as seen already. From (4.2) one infers that pairing always increases injectivity:

R � R O S and S � R O S (4.4)

This unfolds to

ker (R O S) � (ker R) \ (ker S)

which turns out to be an equality:

ker (R O S) = ker R \ ker S (4.5)

This equality is a corollary of the more general:5

(R O S) � � (Q O P) = (R� � Q) \ (S� � P) (4.6)

Similarly to the usual �shunting laws� (2.14, 2.15), injectivity shunting laws also arise as

Galois connections, for instance:

R � g � S , R � S � g� (4.7)

Restricted to functions, (�) is universally bounded by

! � f � id (4.8)

where ! is the only function of its type, A ! 1, where1 is the terminal object (cf. section 2.1).

From (4.8) it is clear that any function f more injective than the identity function is

injective. From (4.4) one concludes thatf O id is always injective, for all f .

4See e.g. (Oliveira, 2014) for a comprehensive account.
5See e.g. (Bird and de Moor, 1997).

4.1. Increasing injectivity 38

minimal complements As written above, a way of increasing the injectivity of an ar-

bitrary function it to pair it with another function. As a re�nement strategy, this corresponds

to running non-injective functions inside injective �envelopes� and delaying their observation

as much as possible. But this cannot be done arbitrarily, as explained below.

Optimal envelopes can be calculated viacomplementation. Two arbitrary functions, f and

g, are said to be complementary i� id � (f O g) holds, that is, they are jointly injective. 6 A

simple example of complementary functions are the projections

� 1(a, b) = a , � 2(a, b) = b (4.9)

which once paired yield the identity itself: � 1 O � 2 = id (A.8). 7

De�nition 4.1. Minimal complements (Bancilhon and Spyratos, 1981) Let a functionf be

given and suppose, for someg:

ˆ id � f O g;

ˆ for any other h such that id � f O h and h � g, then g � h.

Then g is said to be a minimal complement off .

�

In other words, a minimal complement is a function (non-unique in general) that captures

�what is missing� from the original function to become an injection.

Example 4.1. Let f be the exclusive-or (�_) function, which is such that:

ker (�_) = ker

"
1 0 0 1

0 1 1 0

#

=

2

6
6
6
6
6
4

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

3

7
7
7
7
7
5

The objective is to �nd a minimal complement g for �_ . Looking at (4.5), ker g has to cancel all

1's outside the diagonal. Function id could be used for this but it won't be minimal. Clearly,

other options are allowed provided their kernel adds1s where the kernel of the exclusive-or

has 0's. One possibility could be:
2

6
6
6
6
6
4

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

3

7
7
7
7
7
5

6Cf. (Matsuda et al., 2007). Other terminologies are monic pair (Freyd and Scedrov, 1990) or jointly
monic (Bird and de Moor, 1997).

7Note that, if � 1 is a complement of f , i.e. id � � 1 O f , this means that f is injective on the second
arguments once the �rst argument is �xed: f (a, b) = f (a, b0)) b = b0.

4.1. Increasing injectivity 39

However, this matrix is not the kernel of a function because it fails to be an equivalence

relation. The matrix describes a symmetric, re�exive relation, but transitivity does not hold.

The easy way to ensure transitivity is to ensure that the matrix is difunctional .8 Difunc-

tionality is easy to check when relations are represented by Boolean matrices: columns either

do not intersect or they are the same. Therefore it is possible to reach the kernels of minimal

complements of �_ by cancelling zeros symmetrically, outside the diagonal:
2

6
6
6
6
6
4

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

3

7
7
7
7
7
5

!

2

6
6
6
6
6
4

1 1 0 0

1 1 0 1

0 0 1 1

0 1 1 1

3

7
7
7
7
7
5

!

2

6
6
6
6
6
4

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

3

7
7
7
7
7
5

= ker � 1

or
2

6
6
6
6
6
4

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

3

7
7
7
7
7
5

!

2

6
6
6
6
6
4

1 0 1 0

0 1 0 1

1 0 1 1

0 1 1 1

3

7
7
7
7
7
5

!

2

6
6
6
6
6
4

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

3

7
7
7
7
7
5

= ker � 2

The minimal complements of �_ are � 1 and � 2. Taking the former, by complementing �_

with � 1 one obtains the bijection:

2 � 2 2 � 2
� 1

O �_oo =

2

6
6
6
6
6
4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

7
7
7
7
7
5

The outcome is nothing but the classicalCNOT gate:

a � a0

b b0

8
<

:

cnot(0,b) = (0,b)

cnot(1,b) = (1, : b)

8R is a difunctional relation i� R � R � � R � R. SupposeR is re�exive (id � R), symmetric (R � = R) and
difunctional. Then R is transitive, cf.

R � R � R

, f R� = R, R � id = R g

R � R � � id � R

(f id � R g

R � R � � R � R

, f de�nition g

R is difunctional

�

.

4.1. Increasing injectivity 40

�

The example just given, started from a speci�cation � the original logic gate (�_) � and

obtained a version of it � the cnot gate � as reversible implementation. This illustrates a

constructive approach to the creation of quantum gates which is more general than it appears

to be. Noting that cnot can be expressed by

x

cnot

x

y (id x) �_y

(4.10)

let us generalizeid to some function f and �_ to the binary operator � of some monoid(B ; � , 0)

such that

x � x = 0 (4.11)

holds, and de�ne the following generic gate, parametric onf and � :

x
Uf

x

y (fx) � y

(4.12)

Gate (4.12) can be expressed as:

Uf : (A ! B) ! (A � B) ! (A � B)

Uf = � 1 O (� � (f � id))

Below is proven that this is a reversible gate forany f : A ! B :

(Uf) � (Uf) = id

, f Uf (x, y) = (x, (f x) � y)g

Uf (x, (f x) � y) = (x, y)

, f again Uf (x, y) = (x, (f x) � y)g

(x, (f x) � ((f x) � y)) = (x, y)

, f � is associative andx � x = 0g

(x, 0 � y) = (x, y)

, f 0 � x = xg

(x, y) = (x, y)

�

4.2. Recursive programs 41

yin Uf Uf ... Uf yout

xout 1 xout 2 xout n

x in 1 x in 2 x in n

Figure 4.3.: Chaining n � 1-complement computation.

Noting that (4.12) can be drawn in another 2D layout,

y Uf y0

x

x

we observe that such� 1-complemented computations can be chained in the way pictured in

�gure 4.3, which is reminiscent of the accumulative map (recursive) patternmapAccumR in

Haskell. This provides some intuition about our next target � extend � 1 complementation

to recursive computations.

4.2 recursive programs

The cnot example given above showsA � B
� 1 //A being paired with some function of type

A � B ! B resulting in a bijection of type A � B ! A � B in case of complementation. The

goal now is to extend this technique to recursive (non-injective) functions, for instance,

k : A � ! B

k [] = b

k(a : x) = f (a, k x)

so that � 1 O k is injective at a minimal cost. Note the type f : A � B ! B . As is well-known,

k can be expressed by the �fold� combinator, k = foldr f b . Let us de�ne

$f% : A � � B ! B

$f% (x, b) = foldr f b

4.2. Recursive programs 42

B + A � (A � � B)�A � � B

id + id � $f%

B + A � B

$f%

B [id, f]

Figure 4.4.: Diagram of generic fold.

that is

$f% ([], b) = b

$f% (a : x, b) = f (a, $f% (x, b))

The diagram describing $f% is given in �gure 4.4, where the recursive path is governed by

functor FX = B + A � X .9 Our research question at this point is: suppose� 1 O f is injective

� is � 1 O $f% injective? We shall handle a simpler situation �rst, as preparation for the answer.

for- loops The following recursive function,

for f i 0 = i

for f i (n + 1) = f (for f i n)

is such that for f i n = f n i . That is, it iterates a function f : B ! B as many times

as n, with starting input i . In programming, this is known as a for-loop. Note the type

for : (B ! B) ! B ! N 0 ! B , that is, for f : B ! N 0 ! B . As we did above for �nite

lists, we de�ne a similar combinator over natural numbers, $f%(n, i) = for f i n ,

$f%(0, i) = i

$f%(n + 1, i) = f ($f%(n, i))

whose diagram is shown in �gure 4.5, for functorFX = B + X . Isomorphism � is10

� = [0 O id, succ� id] = [0, succ� � 1] O [id, � 2] (4.13)

It will be convenient to generalize [id, f] in �gure 4.5 to g in �gure 4.6, leading to the

universal property

k = $g% , k � � = g � Fk (4.14)

9Isomorphism � will be discussed later.
10Recall that constant functions are denoted by k x = k.

4.2. Recursive programs 43

B + N 0 � B�N 0 � B

id + $f%

B + B

$f%

B [id, f]

Figure 4.5.: Fold over natural numbers.

where Fk = id + k. From (4.14) one draws the usual re�exion-property:

$� % = id (4.15)

Then:

� 1 � � = [0, succ� � 1]

, f + -absorption g

� 1 � � = [0, succ] � (id + � 1)

, f universal property (4.14) g

� 1 = $[0, succ]%

, f de�nition of the initial algebra inN 0 = [0, succ] g

$inN 0% = � 1 (4.16)

From (4.14) we also get a �banana-split� law:

$g%O $h% = $(g � (id + � 1)) O (h � (id + � 2))% (4.17)

This is all we need to study the � 1-complement of$[id, f]%, which we shall denote by

N 0 � B N 0 � B
Yfoo = � 1 O $[id, f]% (4.18)

for an arbitrary f : B B . We reason:

Yf

= f de�nition of Yf (4.18) and (4.16) g

$[0, succ]%O $[id, f]%

= f banana-split (4.17) g

$[0, succ� � 1] O [id, f � � 2]%

= f exchange law (A.28)g

$[0 O id, succ� f]%

4.2. Recursive programs 44

B + N 0 � B�N 0 � B

id + $g%

B + C

$g%

C g

Figure 4.6.: Generalized for-loop (`fold' over the natural numbers).

From Yf = $[0 O id, succ� f]% we draw, via the universal property:

Yf � (0 O id) = 0 O id

Yf � (succ� id) = (succ� f) � Yf

Recall that Yf = � 1 O $[id, f]% and so Yf (n, b) = (n, f n b) � a for-loop that preserves its

input:

n
Yf

n

b f n b

(4.19)

From the two equations de�ning Yf above one can straightforwardly derive the following

implementation in the Haskell programming language, whereqfor f is concrete syntax for

Yf :

qfor :: (b -> b) -> (Int, b) -> (Int, b)

qfor f (0,b) = (0,b)

qfor f (n+1,b) = let (m, b') = qfor f (n, b)

in (m+1,f b')

This implementation will be used in chapter 5.

Finally, one needs to check how injectiveYf is be knowing that f is so. By the rule

[R, S] is injective i� both R and S are injective and R� � S � ?

4.2. Recursive programs 45

[0 O id, succ� f] is injective, becausesucc� f and 0 O id are so, and:

(0 O id) � � (succ� f) � ?

, f converses g

(succ� � f �) � (0 O id) � ?

, f � -absorption g

(succ� � 0) O f � � ?

(f ? O R = ? g

succ� � 0 = ?

, f sincen + 1 6= 0 for all n g

true

Since Yf = $[0 O id, succ� f]% and [0 O id, succ� f] is injective for injective f , Yf will be

injective provided $f% preserves injectivity. Let us abbreviate $f% by k and ker k by K :

K = k� � k

, f unfold k = f � Fk � � � by (4.14) g

K = � � F (k�) � f � � f � Fk � � �

, f assumption: f is injective, f � � f = id g

K = � � F (k�) � Fk � � �

, f F (R � S) = (FR) � (FS) and F (R�) = FR� g

K = � � F (k� � k) � � �

, f K = k� � k; UP (for relations) g

K = $� %

, f Re�exion: $� % = id (4.15) g

K = id (4.20)

�

folds over f inite l ists Back to �gure 4.4, the same steps done for for-loops can

now be repeated for �folds`� over �nite lists, recall:

$f% ([], b) = b

$f% (a : x, b) = f (a, $f% (x, b))

The isomorphism � of the generic fold over �nite lists (�gure 4.4) is:

� = [nil O id, (cons� id) � a] (4.21)

4.2. Recursive programs 46

B + A � (A � � B)�A � � B

id + id � $h%

B + A � C

$h%

C h

Figure 4.7.: Generalized fold over lists.

This involves the components

nil _ = []

cons(a, x) = a : x

of the initial algebra of lists in� = [nil , cons] and the isomorphism:

(A � B) � C A � (B � C)aoo = (id � � 1) O (� 2 � � 2) (4.22)

Following the same line of reasoning of the for-loop, the next step is to generalize �gure 4.4

to �gure 4.7, the former being obtained from the latter by making h = [id, f].

The universal property of such a generalization is

k = $h% , k � � = h � Fk (4.23)

where, this time, Fk = id + id � k. Note how the two universal properties �look the same�,

modulo a di�erent functor F and a di�erent isomorphism � . It is, therefore, no wonder that

a similar result is obtained concerning� 1:

� 1 � � = [nil , cons� � 1 � a]

, f de�nition (4.22) g

� 1 � � = [nil , cons� (id � � 1)]

, f +-absorption (A.22) g

� 1 � � = [nil , cons] � (id + id � � 1)

, f in� = [nil , cons]; universal property (4.23) g

A � A � � B
� 1oo = $in�% (4.24)

�

From this point onwards the parallelism with for-loops is not so close because, whilef :

B ! B in the case of for-loops could be assumed injective,f : A � B ! B in the case of folds

can never be injective forA not a singleton type. However, shouldf be � 1-complemented,

4.2. Recursive programs 47

B + A � (A � � B)�A � � B

id + id � $h%

B + A � (A � � B)

$h%

A � � B h

F (� 1 O f)

B + A � (A � � B)

�

Figure 4.8.: Complement � 1 with f to build the envelop for foldrfb.

� 1 O f will be injective, and there are chances of$� 1 O f% also being� 1-complemented. This

plan is shown in the diagram of �gure 4.8, where

F x = id + xl � (id � x) � xl (4.25)

assumes the isomorphismA � (B � C) xl //B � (A � C) .

Recall that the complement � 1 O $[id, f]% has the type A � � B A � � B . Therefore the

following step is to compare� 1 O $[id, f]% with $� � F (� 1 O f)%. The equality � 1 = $in�% (4.24)

hints the application of �banana-split�,

$g%O $h% = $(g � F � 1) O (h � F � 2)%

(for Fk = id + id � k) once again:

� 1 O $[id, f]%

= f banana-split (above) g

$(in� � [id, f]) � (F� 1 O F� 2)%

= f pairing laws (products) ; Fk = id + id � k g

$[nil , cons� (id � � 1)] O [id, f � (id � � 2)]%

= f exchange law A.28g

$[nil O id, (cons� (id � � 1)) O (f � (id � � 2))]%

= f products A.6 ; a � a� = id g

$� � (a� � (id � � 1) O (f � (id � � 2)))%

Note that

(a� � (id � � 1) O (f � (id � � 2))) = F (� 1 O f)

4.3. Quantamorphism 48

and so:

� 1 O $[id, f]% = $� � (F (� 1 O f))% (4.26)

The meaning of F (� 1 O f) is easy to spell out:

a� ((id � � 1) O (f � (id � � 2))(a, (x, b)))

= f composition (A.55) ; � 1 and � 2 projections (4.9) g

a� ((a, x), f (a, b))

= f associate the right isomorphisma� g

(a, (x, f (a, b)))

�

F preserves injectivity as it is made of operators all of which preserve injectivity. In-

terestingly, the proof that $_% preserves injectivity is exactly the same as (4.20), which is

parametric on F and isomorphism � . That is: � 1 O f injective) $� � (F (� 1 O f))% injective.

Altogether, the moral is:

The � 1-complementation of f in foldr f b in promoted to the � 1-complementation

of the fold itself. That is, � 1-complementation propagates inductively.

De�ning F f = $� � (F (� 1 O f))%, we obtain the reversible gate

x
F f

x

b foldr f b x

(4.27)

provided f is � 1-complemented � the construction corresponding to Y f in the case of for-

loops.

4.3 quantamorphism

Section 2.5 points out that functions can be represented by Boolean (0, 1)-matrices. It is not

di�cult to regard 0 and 1 as, respectively,0% and 100%probability of the function delivering

the corresponding output. This leads to probabilistic functions, also known as Markov-chains.

As a prototypical model of computations, the function concept su�ers a further extension

in quantum mechanics, and a rather interesting one � the probabilities of Markov-chains

generalize to complex numbers, namedamplitudes, which, as mentioned in section 3.1, capture

information of quantum bits.

As all quantum computations have to be reversible, only the isomorphisms of classical func-

tion theory can be regarded as quantum gates. Indeed, they altogether make up the important

4.3. Quantamorphism 49

jYi � H jYi

A H � A

B B

Figure 4.9.: Teleportation protocol (Alice).

class of so-calledclassical gates. What happens, then, to this concept of isomorphism when

matrices are allowed to contain complex amplitudes and not just0s and 1s? Such a concept

su�ers a dramatic generalization, leading to so-calledunitary matrices � the building blocks

of quantum programming.

De�nition 4.2. (Ivanova, 2011) A complex matrix U : A ! A is a unitary matrix i� the

Hermitian conjugate is also its inverse, i.e. :

Uy � U = U � Uy = id (4.28)

where Uy = U � is the conjugate transpose of U.

�

Clearly, every classical isomorphismf is unitary becausef y is the conversef � and f � � f =

id = f � f � . Let us look at a concrete quantum circuit, trying to identify where the unitary

transformations are. We take the �rst part (The Alice part) of the well-known teleportation

protocol, depicted in �gure 4.9. Two instances ofcnot can be seen, one involving linesA and

B and the other involving the lines jYi and A. These are unitary, classic gates. Then we see

two instances of the shape

x H x0

y y

Let us refer to this shape using the symbolh. Then it is clear that the lower cnot is preceded

by h, while the upper cnot is followed by h. De�ning

bell = cnot � h

and

unbell = h � cnot

we reach �gure 4.10. The question is: what does the �composition� operator,(�) mean, in

this context?

4.3. Quantamorphism 50

jYi

unbell

jYi

A
bell

A

B B

Figure 4.10.: Symmetry in the teleportation protocol (Alice part).

Since sequential composition is no longer between functions but rather between matrices,

the answer is that composition is the matrix-matrix multiplication (MMM) mentioned in

section 2.1. In a category of matrices, such compositions are characterised by:bell = 4 h�!

4 cnot��! 4 and unbell = 4 cnot��! 4 h�! 4.

Note that h is not the Hadamard gate (of type 2 ! 2) � it is actually the tensor product

of the Hadamard gate with the identity (this corresponds to the line below, in the diagram).

This leads to the next question: what does the product of matrices mean? By extending

pairing of relations to pairing of matrices one is led to the so-calledKhatri-Rao product . The

Khatri-Rao product of matrices M and N is de�ned by:

(x, y)(M O N)a = (xMa)(yNa)

As for relations, the product of two matrices arises as the bifunctor associated to pairing11,

M
 N = M � � 1 O N � � 2

which is popularly known as the Kronecker product.

In the category of relations, we had the notion of join R [S and meet R \ S of two

relations R and S. Moving to matrices, these operations translate to (cell-wise) addition and

multiplication, respectively:

R [S becomesM + N

R \ S becomesM � N

Moreover, categories of matrices are Abelian categories. This means that every homset forms

an Abelian group such that composition is bilinear relative to + :

Q � (M + N) = Q � M + Q � N

(M + N) � Q = M � Q + N � Q

11A bifunctor is a binary functor of type: F : C � D ! E . When C = E = D , F is referred to as an
endo-bifunctor.

4.3. Quantamorphism 51

Thanks to matrix product and composition, gates bell and unbell above can be expressed by

bell = cnot � (H
 id) and unbell = (H
 id) � cnot12, respectively. Moreover, the Alice part

of the teleportation protocol is the circuit captured by

telep = (unbell
 id) � a � (id
 bell) (4.29)

where isomorphisma � recall (4.22) � is grants the �shift� between the qubits involved.

In the same way relational terms can be expressed bymonadic functions over the powerset

monad, and Markov chain terms involving probabilistic matrices can be performed by monadic

functions over the distribution monad13, the linear algebra expressiontelep can be formulated

as a monadic program too:

telep (c, (a, b)) =

do f

(a0, b0) bell(a, b)

(c0, a00) unbell(c, a0)

return (c0, (a00, b0))

g

Note the type telep : V ec 2 ! V ec (2 � (2 � 2)) of the monadic program, whereV ec is

a (parametric) vector space monad. In this line of thought, the Hadamard gate (H) itself

(previously de�ned as a matrix in section 3.3) can be written pointwise as theV ec-valued

function,

H :: 2 ! V ec2

H 0 =

2

4
1p
2

1p
2

3

5

H 1 =

2

4
1p
2

� 1p
2

3

5

and even as

H :: 2 ! V ec2

H 0 =
j0i + j1i

p
2

H 1 =
j0i � j 1i

p
2

12The symbol H is normally used to denote the Hadamard gate.
13This requires �nite support distributions in the latter case and �nitely bounded non-determinism in the

relations of the former case (Hasuo et al., 2007; Oliveira and Miraldo, 2016).

4.3. Quantamorphism 52

where j0i and j1i are the standard basis vectors de�ned in section 3.2.

Note how the vector monadV ec Ais captured, in our setting, (�nitely supported) complex-

valued vectors with baseA. Therefore, A ! V ec B is a function representing a matrix of

type A ! B . In fact, every such function represents a matrix and vice-versa. Technically,

one says that a category of matrices is the Kleisli category of the corresponding vector-space

monad. This allows us to interpret diagrams in the Kleisli category while implementing them

as monadic functions. Because we are studying quantum programming, such matrices have

to be unitary, recall axiom (3.4).14

The question now is: how does one express the recursive, reversible functions of section

4.2 in the situation where the involved operations become unitary computations and not just

functions? All that needs to be done is to extend the recursive patterns of section 4.2 (for's

and folds, recall) monadically, as explained next.

Starting from the for -combinator implementing standard recursive programs over natu-

ral numbers, we head for a quantum for-combinator, qfor , as is the outcome of the� 1-

complement of $[id, f]%. Again we represent this by Yf , recall Yf � � = [0 O id, succ� f] �

(id + Yf) and follow the lemma �keep de�nition, change category� 15:

YM � � =
h

0 O id succ
 M
i

� (id � YM) (4.30)

wheref has given place to a unitary matrix M and the product became the Kronecker product.

Also, note that relational junction [R, S] becomes the coproduct of two matrices
h

M N
i

(this collates M and N horizontally). The corresponding bifunctor is usually known asdirect

sum:

M � N =
h

i 1 � M i 2 � N
i

(4.31)

Therefore, we can further calculate:

YM � � =
h

0 O id succ
 M
i

� (id � YM)

, f re-arranging g

YM =
h

0 O id succ
 M) � YM
i

� � �

, f unfold � g

YM =
h

0 O id (succ
 M) � YM
i

�
h

0 O id succ
 id
i �

14By de�nition, in an orthogonal basis a unitary transformation corresponds to a unitary matrix, see
de�nition 4.2. A unitary transformation can be regarded as an isomorphism between two Hilbert spaces,
meaning that unitary transformations generalize bijective functions.

15(Oliveira and Miraldo, 2016).

4.3. Quantamorphism 53

Relations and matrices are so close the relational property[R, S] � [P, Q]� = R � P � [S � Q�

also holds for matrices, changing the category:16

h
M N

i
�
h

P Q
i �

= M � P � + N � Q� (4.32)

This allows writing YM as

YM = (0 O id)(0 O id) � + (succ
 M) � YM � (succ�
 id) (4.33)

Therefore we obtain the recursive matrix de�nition whose least �xpoint is:

YM = �X .((0 O id) � (0 O id) � + (succ
 M) � X � (succ�
 id)) (4.34)

This corresponds to a quantum gate that iterates M over two inputs, the target (second input)

and the control (�rst input):

n

YM

n

b M n b

(4.35)

The monadic function corresponding to this matrix is as simple as the monadic evolution of

what we had before,

qfor :: (b -> b) -> (Int, b) -> (Int, b)

qfor f (0,b) = (0,b)

qfor f (n+1,b) = let (m, b') = qfor f (n, b)

in (m+1,f b')

which we label mqfor:17

mqfor :: (Monad m) => (b -> m b) -> (Int, b) -> m (Int, b)

mqfor f (0,b) = return (0,b)

mqfor f (n+1,b) = do { b' <- f b ;

(m,b'') <- mqfor f (n, b');

return (m+1,b'')

}

This implementation will be used in chapter 5.

The question is now: isYM unitary for M unitary? Recall that the functor underlying

these de�nitions is FX = id � X . Since � is a bifunctor, it commutes with composition

(matrix multiplication) and preserves unitary matrices. Moreover, (FX)y = F (X y) and, of

16This equality is known as the divide & conquer rule of matrix multiplication.
17This de�nition is generic on monad m. For the identity monad, mqfor coincides with qfor .

4.3. Quantamorphism 54

course, � y = � � . So we can proceed with the usual proof, abbreviatingYM = X and

K = X y � X :

K = X y � X

, f unfold X = M � FX � � � g

K = � � F (X y) � M y � M � FX � � �

, f assumption: M is unitary, de�nition (4.2): M y � M = id g

K = � � F (X y) � FX � � �

, f F (M � N) = (F � M)(F � N) and FM y = (FM)y g

K = � � F (X y � X) � � �

, f K = X y � X ; UP for catamorphisms (4.14)g

K = $� %

, f Re�exion: $� % = id (4.15) g

K = id (4.36)

�

quantum folds This paragraph �nally addresses quantamorphisms which are folds of

lists over unitary matrices. In this case, function f : A � B ! B complemented by� 1 gives

room to some unitary matrix U : A � B ! A � B . The strategy is to repeat what we have

done before, for functor FX = id � id � X , which preserves unitary matrices too. This

particular case of quantamorphism is depicted in �gure 4.11. The corresponding monadic

encoding is as follows:

mqfold :: ((a, b) -> Vec (c, b)) -> ([a], b) -> Vec ([c], b)

mqfold f ([],b) = return ([],b)

mqfold f (h:t,b) =

do {

(t',b') <- mqfold f (t,b) ;

(h'',b'') <- f(h,b');

return(h'':t', b'')

}

4.4. Running quantamorphisms 55

B + A � (A � � B)�A � � B

id + id � $h%

B + A � (A � � B)

$h%

A � � B h

F U

B + A � (A � � B)

�

Figure 4.11.: Quantum foldr over unitary matrix U.

This is actually a more generic program, parametric on the underlying monad, that can be

pretty-printed as follows:

$.% :: Monad T) ((a, b) ! T (c, b)) ! ([a], b) ! T ([c], b)

$f% ([], b) = return ([], b)

$f% (h : t, b) = dof

(t0, b0) $ f %(t, b);

(h00, b00) f (h, b0)

return (h00: t0, b00)

g (4.37)

The generic program uses a list of classical bits to control qubitb (the target), where f is

assumed unitary.

4.4 running quantamorphisms

The monadic encodings of quantamorphisms given above are, as we have seen, in one-to-

one correspondence with unitary matrices describing quantum computations. Running such

monadic functions is a form of simulating such computations. Take for instance the quantum

fold Q = $H � id%, where H is the Hadamard gate. Using GHCi, the Haskell standard

interpreter, by evaluating q([0, 1, 1, 1], 0), where q is the monadic function encodingQ, one

obtains the vector

4.4. Running quantamorphisms 56

q([0, 1, 1, 1], 0) =

([0,0,0,0],0) 0.24999997

([1,0,0,0],0) � 0.24999997

([0,1,0,0],0) � 0.24999997

([1,1,0,0],0) 0.24999997

([0,0,1,0],0) � 0.24999997

([1,0,1,0],0) 0.24999997

([0,1,1,0],0) 0.24999997

([1,1,1,0],0) � 0.24999997

([0,0,0,1],0) 0.24999997

([1,0,0,1],0) � 0.24999997

([0,1,0,1],0) � 0.24999997

([1,1,0,1],0) 0.24999997

([0,0,1,1],0) � 0.24999997

([1,0,1,1],0) 0.24999997

([0,1,1,1],0) 0.24999997

([1,1,1,1],0) � 0.24999997

expressing the superposition of all possible outputs and the corresponding amplitudes.

However, further than simulation, the aim of this master project is to generate actual

quantum programs and run these on quantum hardware, namely on IBM Q Experience devices.

The strategy devised for achieving this aim is displayed in �gure 4.12. Its work-�ow consists

of four main steps, as follows:

ˆ GHCi - depending on the number of resources available in the target hardware (i.e.

number of qubits), the monadic quantamorphisms are used to generate the �nite, unitary

matrices that describe the intended (recursive) quantum computations;

ˆ Quipper - this tool generates the quantum circuit from the unitary matrix;

ˆ QISKit 18 - the quantum circuit generated by Quipper is passed to this Python interface,

which adds error-correction extra circuitry;

ˆ IBM-Q - the actual code generated by QISKit runs on the actual, physical quantum

device.

Note that Quipper and QISKit can also both be used to simulate the circuits locally, cross-

checking with the behaviour observed in GHCi.

Chapter 5 shall devote itself to describing all the experiments carried out. All of them are

benchmarks of recursive quantum programs generated using the principles described in the

current chapter.

18QISKit version earlier than 0.6.

4.5. Summary 57

GHCi Quipper Quiskit IBM Q

Figure 4.12.: Work-�ow.

4.5 summary

The short version of this chapter goes as follows. Programs can be seen as morphisms of

categories and, consequently, obey some mathematical laws. It turns out that, in many

situations, it is possible to start creating a program from its speci�cation and re�ne this

speci�cation up to a bijective implementation.

Bijections are reversible, which is a requirement of quantum programs. In this work, the

method used to acquire reversibility is the minimal complement (de�ned in 4.1). Once re-

versibility is established, at quantum level one tries to assure that the program runs as long

as possible without any measure. This is possible for a particular class of recursive programs

termed quantamorphisms. Two examples of quantamorphism are given, quantum for-loops

(where the control is a natural number) and quantum folds (where the control is a �nite list).

To make sure that such programs extend to quantum, one somehow needs to reach the

standard semantics of quantum programs, usually expressed in linear algebra. In other words,

instead of achieving a bijective function, the new goal is to achieve a unitary matrix. For this,

the �keep de�nition, change category� principle is followed. Since the new category is the

Kleisli category of a particular monad, for the �nite case one can write monadic, functional

programs to calculate the unitary matrices. The Haskell functional programming language is

used for this purpose, paving the way to experimentation.

Although the quantum computers of today are still in an embryonic stage, the quantamor-

phism concept does not have to linger in a theoretical context. Besides the many ways to

simulate quantum computer behaviour, there are quantum computers of IBM Q Experience

that can run our programs. The following chapter details the experiments of running the

quantum programs devised in the current chapter on real quantum devices.

5
A P P L I C AT I O N - C A S E S T U D I E S A N D E X P E R I M E N T S

The previous chapter, chie�y devoted to explaining the theory behind recursive quantum

programming combinators calledquantamorphisms, ended with a prospect of implementing

such ideas not only on a classical computer but also, and foremost, on IBM Q Experience

quantum devices.

This chapter will describe all the steps needed to carry out such an implementation through

examples. Each example starts with a speci�cation, written as a quantamorphism. By encod-

ing this into a (recursive, monadic) function in Haskell, it is possible to recover the matrix

that describes the semantics of the program (section 5.2), tuned to the particular resources

available. Then Quipper is used to extract a quantum circuit from this matrix (section 5.3).

Finally, we resort to QISKit to run the generated circuit on the actual quantum device (section

5.4).

Running the circuits in real quantum devices has raised challenges not anticipated in the

theoretical perspective. For better comprehension of the implementation scheme, this chapter

starts by introducing typical error sources of IBM Q Experience devices (section 5.1).

5.1 challenges

decoherence (Sandberg et al., 2018) A quantum bit is a system that can be accessed

and manipulated through quantum gates. Therefore, it will exchange energy with the environ-

ment and will not work exactly as predicted by the theory. In particular, it will not maintain

its state for an arbitrary time. Relaxation derives from energy exchanges between the system

and the environment that relax (or excite) the quantum system to a state with a di�erent

energy. Experiments reported in the QISKit tutorial (Breitweiser et al., 2018) already show

that increasing the time of running a circuit results in exponential decaying of the expected

measures.

Further to relaxation, a working quantum computer is expected to interact with its envi-

ronment. Increasing the number of interaction with the environment (gates) will result in

dephasing, i.e. in a process that transforms quantum coherent states into classical mixed states

and does not result in energy exchange.

58

5.2. GHCi 59

�

�

Figure 5.1.: An example of a gate without direct implementation in IBM Q Experience.

l imitat ions of ibm q experience IBM Q Experience is not yet ready to directly

implement some gates or some combinations of gates, see e.g. �gure 5.1. As the quantum

circuits in Quipper resulting from our matrices are not always limited to the standard gates

available in IBM Q Experience, it is necessary to decompose some gates. Besides, the QISKit

program adds extra changes to the circuit in order to adapt to the actual device used.

Such modi�cations of the initial circuit increase circuit size, not only making circuits more

susceptible to error (like decoherence) but also increasing the possibility of problems in QASM
1 (e.g. bugs). In other words, the circuit may have a higher error rate or even be impossible

to run a real device.

5.2 ghci

The applications examined in the chapter follow the general encoding of monadic quantamor-

phisms, recall e.g. (4.37). As a result, the programs tested always control a target qubit with

other qubits, testing classic scenarios �rst and gradually adding superposition. Experiments

involving programs with more qubits follow.

quantamorphism for X As seen in section 3.3, theX gate is equivalent to the

classical NOT gate. The loopfor X accepts two arguments, a number and a boolean. When

a number is even nothing happens to the boolean, otherwise the boolean is negated. That

is to say, for X tests the parity of the number given as input. In Haskell, this calls for the

qfor combinator, recall:

qfor :: (b -> b) -> (Int, b) -> (Int, b)

qfor f (0,b) = (0,b)

qfor f (n+1,b) = let (m,b') = qfor f (n, f b) in (m+1,b')

This experiment tested two di�erent cardinalities, corresponding to 2 (resp. 3) control

qubits enabling numbers from0 to 3 (resp. 7), that is, to the range of inputs f 00, 01, 10, 11g

(resp. f 000, 001, 010, 011, 100, 101, 110, 111g). The corresponding implementations in Haskell

result in the matrices (5.1) and (5.2). To better understand the meaning of these matrices,

1QASM is a simple text language that describes the generic quantum circuit (Cross et al., 2017).

5.2. GHCi 60

the truth table 5.1 makes it simple to comprehend what the outputs expected for each input

are.

(0
,F

al
se

)

(0
,T

ru
e)

(1
,F

al
se

)

(1
,T

ru
e)

(2
,F

al
se

)

(2
,T

ru
e)

(3
,F

al
se

)

(3
,T

ru
e)

(0,False) 1 0 0 0 0 0 0 0
(0,True) 0 1 0 0 0 0 0 0
(1,False) 0 0 0 1 0 0 0 0
(1,True) 0 0 1 0 0 0 0 0
(2,False) 0 0 0 0 1 0 0 0
(2,True) 0 0 0 0 0 1 0 0
(3,False) 0 0 0 0 0 0 0 1
(3,True) 0 0 0 0 0 0 1 0

(5.1)

(0
,F

al
se

)

(0
,T

ru
e)

(1
,F

al
se

)

(1
,T

ru
e)

(2
,F

al
se

)

(2
,T

ru
e)

(3
,F

al
se

)

(3
,T

ru
e)

(4
,F

al
se

)

(4
,T

ru
e)

(5
,F

al
se

)

(5
,T

ru
e)

(6
,F

al
se

)

(6
,T

ru
e)

(7
,F

al
se

)

(7
,T

ru
e)

(0,False) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0,True) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,False) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

(1,True) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(2,False) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

(2,True) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

(3,False) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(3,True) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

(4,False) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(4,True) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

(5,False) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

(5,True) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

(6,False) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

(6,True) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

(7,False) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(7,True) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(5.2)

Clearly, when the control qubits (q0 and q1) of the input represent an even number the

target qubit (q2) value holds, otherwise the control qubits represent an odd number and the

target changes.

In the following experiments, we shall drop the matrix label descriptions for the economy

of space.

quantamorphism for Y The Pauli gates (X gate, Y gate and Z gate) stand out

as some of the most used. While the previous experiment used theX gate (a completely

5.2. GHCi 61

input output

q0 q1 q2 q0 q1 q2

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 5.1.: Truth table of circuit for-loop quantamorphism over X gate.

classical gate), in the next we want to observe truly quantum outcomes. For this purpose, we

use theY gate.

In this case, wherever the number represented by the control bits is even or not, the target

preserves its state. Otherwise, the state rotates� around of the Y-axis of the Bloch sphere;

in other words, j0i is changed toi j1i and j1i to � i j0i . Since this gate is truly quantum, we

have to use the monadic implementation of for-loops, recallmqfor:

mqfor :: (Monad m) => (b -> m b) -> (Int, b) -> m (Int, b)

mqfor f (0,b) = return (0,b)

mqfor f (n+1,b) = do { b' <- f b ; (m,b'') <- mqfor f (n, b'); return (m+1,b'') }

The matrix corresponding to for Y for 2 control qubits (numbers from 0 to 3) is given by

(5.3).
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 � i 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 i

0 0 0 0 0 0 i 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.3)

Although this program involves complex numbers in its matrix, the measure will have the

same result as in the truth table 5.1.

quantamorphism for H (creating superposit ion) To assure quantum su-

perposition in the target when the control is an odd number we use Hadamard gate . This

quantum rotation gate is the most commonly used to create superposition. H gate maps

5.2. GHCi 62

inputs output

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.2.: Truth table of the XOR gate.

the state j0i to j0i + j1ip
2

and j1i to j0i�j 1ip
2

. This means that once the control qubis trigger the

Hadamard gate, the target (assuming it is in the default state j0i) will have 50/ 50 chances

to measure0 or 1. The outcome of quantamorphismmqfor passingH as parameter is the

matrix (5.4).
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1p
2

1p
2

0 0 0 0

0 0 1p
2

� 1p
2

0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1p
2

1p
2

0 0 0 0 0 0 1p
2

� 1p
2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.4)

quantamorphism foldr X OR Recall from section 3.3 thatXOR (not reversible, see

the truth table 5.2) becomesCNOT (reversible) once� 1-complemented. So the quantamor-

phism folding over XOR is a classical circuit controlled by a list of qubits, recall:

qfold :: ((a,b)->(c,b))->([a],b)->([c],b)

qfold f ([], b) = return ([],b)

qfold f (h:t,b) =

do {

(t',b') <- qfold f (t, b);

(h'',b'') <- f (h,b');

return (h'':t',b'')

}

Using lists of at most 4 qubits the outcome of this quantamorphism folding overXOR is the

matrix given in (5.5).

5.3. Quipper 63

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0
0 1 0
0 0 1 0
0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0
0 1 0 0 0
0 1
0 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.5)

5.3 quipper

Quipper is a scalable functional programming language for quantum computation. It does

not depend on any particular hardware but is adjusted to the computation model consisting

of a classical computer (the master, for control) and a quantum device (the slave) (Green

et al., 2013a,b).

The main purpose of using Quipper in our experiments is to generate quantum circuits

from the matrices produced in section 5.2. Quipper has mechanisms to perform this in an

automatic way.

Furthermore, there is interest in simulating these circuits in order to verify if approximations

play a signi�cant part in this part of the tool-chain. For a detailed analysis, printing the

circuits and its description is necessary.

All the programs described in this section can be found in appendix B. The following

information regards the implementation.

for- loop quantamorphism over X gate Back to this example, the aim is to

produce a quantum circuit from matrix (5.2). Of the various methods for generating circuits in

Quipper, the selected alternative is the functionexact_synthesis from QuipperLib.Synthesis .

This function receives a matrix and generates a circuit without ancillas. Listing 5.1 exhibits

5.3. Quipper 64

how to use function exact_synthesis and how to use the result to de�ne a circuit with [a, b]

as control qubits and c as target qubit.

1 -- From a matrix

mymatr ix :: Matr ix Eight Eight (Integer)

3 mymatrix = matr ix_of_funct ion f

where

5 f i j

| i == 0 && j == 0 = 1

7 | i == 1 && j == 1 = 1

| i == 2 && j == 3 = 1

9 | i == 3 && j == 2 = 1

| i == 4 && j == 4 = 1

11 | i == 5 && j == 5 = 1

| i == 6 && j == 7 = 1

13 | i == 7 && j == 6 = 1

| otherwise = 0

15

synthesized = exact_synthesis mymatr ix

17

circuit ::([Qubit] , Qubit) -> Circ ([Qubit] , Qubit)

19 circuit ([a , b] , c) = do

synthesized [a ,b ,c]

21 return ([a ,b] ,c)

Listing 5.1: Quipper exact_synthesis implementation.

The next step is to embed the original circuit into one main circuit. The main circuit receives

the original circuit as an oracle and includes the qubit state preparation and measurements.

(See listing 5.2.)

1 -- declare circuit funct ion

circui t_funct ion :: Oracle -> Circ ([Bit] , Bit)

3 circui t_funct ion oracle = do

-- ini t ia l ize str ing of qubits

5 top_qubits <- qinit (repl icate (qubit_num oracle) False)

bottom_qubit <- qinit True

7 label (top_qubits , bottom_qubit) (" |0>" ," |1>")

9 -- set the init ial states of the qubits

mapUnary hadamard top_qubits

11

comment " before oracle "

13 -- call oracle

funct ion oracle (top_qubits , bottom_qubit)

15 comment " after oracle "

17 -- measure qubits

5.3. Quipper 65

input

q0 q1 q2

j0i j 0i j 0i
j0i j 0i j 1i
j0i j 0i 1p

2
(j0i + j1i)

j1i j 1i j 0i
j1i j 1i j 1i
j1i j 1i 1p

2
(j0i + j1i)

1p
2
(j0i + j1i) 1p

2
(j0i + j1i) j0i

1p
2
(j0i + j1i) 1p

2
(j0i + j1i) j1i

1p
2
(j0i + j1i) 1p

2
(j0i + j1i) 1p

2
(j0i + j1i)

Table 5.3.: Input for circuit for-loop quantamorphism over X gate.

(top_qubits , bottom_qubit) <- measure (top_qubits , bottom_qubit)

19 -- discard unnecessary output and return result

return (top_qubits , bottom_qubit)

Listing 5.2: Quipper main circuit function implementation.

This change in the qubits can be implemented by adding the lines of listing 5.3. In particular,

the gate_X is added to shift states from 0 to 12 and Hadamardto create superposition. The

sets of inputs tested can be found in table 5.3.

-- set the init ial states of the qubits

2 mapUnary Hadamard top_qubits

-- and /or

4 mapUnary gate_X bottom_qubits

Listing 5.3: Set Quipper inputs.

When adding additional control qubits, the matrix implemented is also di�erent � compare

the matrix as implemented in listing 5.4 with matrix (5.2).

-- From a matrix

2 type Sixteen = Ten_and Six

4

mymatrix :: Matr ix Sixteen Sixteen (Integer)

6 mymatrix = matrix [[1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

[0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

8 [0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

2Quipper allows initializing qubits with 0 and 1, hence we can choose not to useX gate if it is the �rst
gate to operate a qubit.

5.3. Quipper 66

[0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

10 [0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

[0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

12 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

[0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

14 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,

[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0] ,

16 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0] ,

[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0] ,

18 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0] ,

[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0] ,

20 [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1] ,

[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0]]

22

24 synthesized = exact_synthesis mymatr ix

26 circuit ::([Qubit] , Qubit) -> Circ ([Qubit] , Qubit)

circuit ([a , b , c] , d) = do

28 synthesized [a ,b ,c ,d]

return ([a ,b ,c] ,d)

Listing 5.4: Quipper exact_synthesis implementation of quantamorphism for X with 3

control qubits.

While Quipper accepts a large number of quantum gates, QISKit is much more limited in

terms of gate diversity. This results in the need to decompose circuits. The IBM Q Experience

tutorial provides some explanation on how to decomposed such gates but Quipper goes further

and provides a function that decomposes circuits for us, see e.g. listing 5.5.

1 -- Decompose the circuit in the standard gates

rand = RandomSource (fst (spl i t (mkStdGen 10)))

3 prec = 20 * bits

5 circui t_decompose = decompose_generic (Standard prec rand) circuit

Listing 5.5: Quipper decompose_generic implementation.

To ensure that the circuit of quantamorphism for X , for numbers up to 7, is easy for

QISKit to translate, the type of decomposition chosen is Standard. This means that the

decomposed circuit is limited to the essential gates: Pauli Gates (X , Y , Z), Hadamard gate,

CNOT , S, Sy, T and T y.

5.3. Quipper 67

Compared to other decomposition types,Standard has the advantage of reducing the de-

composition made by QISKit.3 The downside of applying the Standard decomposition are

the approximations, the increase in the number of gates and the addition of auxiliary qubits,

all of which contribute for a larger error rate when experimenting on a real device.

Because of this decomposition, this experiment o�ers results in two data sets (the original

and the decomposed), each of comprising a circuit, a circuit description and simulation tests.

for- loop quantamorphism over Y gate The implementation of the matrix

generated bymqfor Y is similar to the experiment over X gate with the maximum number

equal to 3. However, the type of matrix is di�erent, for its elements are no longerInteger ,

neither are such elements of typeComplex, as in Haskell. Quipper asks for a speci�c type:

Cplx Integer . The implementation can be found in listing 5.6.

-- From a matrix

2 mymatrix :: Matr ix Eight Eight (Cplx Integer)

mymatr ix = matrix [[Cplx (1) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

4 [Cplx (0) (0) , Cplx (1) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

[Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (-1) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

6 [Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (1) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

[Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(1) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

8 [Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (1) (0) , Cplx (0) (0) , Cplx (0) (0)] ,

[Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (-1)] ,

10 [Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx (0) (0) , Cplx

(0) (0) , Cplx (0) (0) , Cplx (0) (1) , Cplx (0) (0)]]

12

synthesized = exact_synthesis mymatr ix

14

circuit :: ([Qubit] , Qubit) -> Circ ([Qubit] , Qubit)

16 circuit ([a , b] , c) = do

synthesized [a ,b ,c]

18 return ([a ,b] ,c)

Listing 5.6: Quipper exact_synthesis implementation of mqfor Y .

3QISKit is still work in progress and su�ers from a considerable amount of bugs. Thus our choice of relying
on Quipper decompositions rather than on QISKit decompositions.

5.3. Quipper 68

A short analysis of the circuit generated for this matrix (�gure 5.13) exposes gates with

complex implementation in QISKit. The function for decomposing this circuit is equal to the

one previously used to decomposemqfor X, with inputs ranging over (f 0, ..., 7g, boolean), see

listing 5.5. Furthermore, observe how the code in listings 5.7 and 5.8 is applied to call the

simulations, where the function simulate is implemented in listing 5.9.

1 simulate (circui t_funct ion my_oracle)

where

3 -- declare empty_oracle 's data type

my_oracle :: Oracle

5 my_oracle = Oracle {

-- set the length of qubit str ing

7 qubit_num = 2,

funct ion = circuit

9 }

Listing 5.7: Call simulation of original circuit.

simulate (circui t_funct ion my_oracle)

2 where

-- declare empty_oracle 's data type

4 my_oracle :: Oracle

my_oracle = Oracle {

6 -- set the length of qubit str ing

qubit_num = 2,

8 funct ion = circui t_decompose

}

Listing 5.8: Call simulation of the decomposed circuit.

-- simulate funct ion

2 simulate :: Circ ([Bit] ,Bit) -> IO ()

simulate circuit = print (sim_generic (1.0:: Float) circuit)

Listing 5.9: Simulation function.

creating superposit ion via H As expected, the experimental setup of the for-loop

over Hadamard gate is almost identical to the aforementioned experiments. The main change

is in the matrix type. The type corresponding to 1p
2

is Cplx (RootTwo (Ratio Integer)) .

To make this matrix legible 1p
2

was de�ned asinvsq2 (listing 5.10). This experiment has the

same requirements for decomposition as the previous experiment with theY gate. However,

this simulation could not run with the simulation of the decomposed circuit, because of the

assertion of the auxiliary qubit.

5.3. Quipper 69

-- * From a matrix

2

invsq2 :: Cplx (RootTwo (Ratio Integer))

4 invsq2 = Cplx (RootTwo 0 (1 % 2)) 0 :: Cplx (RootTwo (Ratio Integer))

6 mymatrix :: Matr ix Eight Eight (Cplx (RootTwo (Ratio Integer)))

mymatr ix = matrix [[1 , 0, 0, 0, 0, 0, 0, 0] ,

8 [0 , 1, 0, 0, 0, 0, 0, 0] ,

[0, 0, invsq2 , invsq2 , 0, 0, 0, 0] ,

10 [0 , 0, invsq2 , - invsq2 , 0, 0, 0, 0] ,

[0, 0, 0, 0, 1, 0, 0, 0] ,

12 [0 , 0, 0, 0, 0, 1, 0, 0] ,

[0, 0, 0, 0, 0, 0, invsq2 , invsq2] ,

14 [0 , 0, 0, 0, 0, 0, invsq2 , - invsq2]]

16

synthesized = exact_synthesis mymatr ix

18

circuit ::([Qubit] , Qubit) -> Circ ([Qubit] , Qubit)

20 circuit ([a , b] , c) = do

synthesized [a ,b ,c]

22 return ([a ,b] ,c)

Listing 5.10: Quipper exact_synthesis implementation of matrix H.

Remark 5.1. The authors of Quipper know that, in a real quantum computer, when a qubit

concludes with an assertion there is no way to verify the assertion. So, they admit the best

option is to measure the qubit and throw an error when the assertion is incorrect. Although

they also acknowledge that a quantum state could be split and the program could throw an

error if the state existed in the incorrect state with probability di�erent of zero, the authors

chose not to apply this because of the errors arising from rounding (Silk, 2016).

Consequently, the simulation was limited to the initial circuit. The simulation of quan-

tamorphism mqfor H ran with the same inputs used in the �rst quantamorphism qfor X

gate.

fold quantamorphism over X OR gate The experiment in the quantamorphism

of XOR gate does not increase the superposition of the qubits. In fact, it is entirely clas-

sical. The changes from this experiment compared toqfor X are mainly limited to the

number of qubits. This example exhibits 4 control qubits and 1 target qubit. This (relatively

small) increase in the number of qubits results in an exponential growth of the matrix size.

Consequently, de�ning a new type thirty_two was required. Due to its size, the Quipper

implementation of this matrix is deferred to appendix B.11.

5.3. Quipper 70

Figure 5.2.: Circuit from quantamorphism qfor X working with 2 qubits as controls.

Despite being completely classical, this circuit needed decomposition (similar to the second

example of quantamorphismqfor X gate). The simulation corresponding to the decomposed

circuit did not run either.

Finally, is also worth mentioning that the function to print circuits and circuit descriptions

can be found in listing 5.11 and 5.12.

1 print_generic Preview (circui t_funct ion my_oracle)

Listing 5.11: Function to print pdf of original circuit.

print_generic ASCII (c i rcui t_funct ion my_oracle)

Listing 5.12: Function to print description of the circuit.

Having made the implementation more clear, we proceed to the analysis of the results.

for- loop quantamorphism over X gate In the �rst case of a qfor over X gate,

the implementation gives 3 outputs:

ˆ The circuit;

ˆ The description of the circuit;

ˆ And the simulation.

The circuits can be found in �gure 5.2. This shows two To�oli gates, where the second To�oli

gate has a negated control (the white dot).

The description of this circuit was later used to translate this circuit to QISKit. It can be

found in listing 5.13.

1 Inputs : none

QInit1 (0)

3 QInit1 (1)

QInit1 (2)

5 Comment [""](0: " |1 >[0] " , 1: " |1 >[1] " , 2: " |1>")

Comment [" before oracle "]()

7 Comment [" ENTER : exact_synthesis "](0: "q [0] " , 1: "q [1] " , 2: "q [2] ")

5.3. Quipper 71

Initial State Preparation Output Measure Probability
(%)

q0 q1 q2 q0 q1 q2

0 0 0 0 0 0 100
0 0 1 0 0 1 100

0 0 Hadamard
0 0 1 50
0 0 0 50

1 1 0 1 1 1 100
1 1 1 1 1 0 100

1 1 Hadamard
1 1 1 50
1 1 0 50

Hadamard Hadamard 0

1 1 1 25
0 1 1 25
1 0 0 25
0 0 0 25

Hadamard Hadamard 1

1 0 1 25
0 0 1 25
1 1 0 25
0 1 0 25

Hadamard Hadamard Hadamard

1 1 1 12.499999
0 1 1 12.499999
1 0 1 12.499999
0 0 1 12.499999
1 1 0 12.5
0 1 0 12.5
1 0 0 12.5
0 0 0 12.5

Table 5.4.: Results of Quipper simulation in the circuit from matrix qfor X working with 2 qubits
as control.

QGate ["X"](2) with controls =[+0 , +1]

9 QGate ["X"](2) with controls =[-0 , +1]

Comment ["EXIT : exact_synthesis "](0: "q [0] " , 1: "q [1] " , 2: "q [2] ")

11 Comment [" after oracle "]()

QMeas (2)

13 QMeas (1)

QMeas (0)

15 Outputs : 0: Cbit , 1: Cbit , 2: Cbit

Listing 5.13: Description of circuit of the qfor of X gate working with 2 qubits as controls.

The simulation outputs are expressed in terms of �True� or �False�. �True� means to have the

qubit in state 1 and �False� means to have the qubits in state 0. In table 5.4 the simulation

results are translated to the conventional notation in this dissertation.

The second case ofX gate quantamorphism has a second group of outputs corresponding

to the decomposition.

5.3. Quipper 72

Figure 5.3.: Original circuit generated by qfor X working with 3 qubits as controls.

Figure 5.4.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 1).

The circuits generated by this matrix are in �gure 5.3 (original circuit) and �gures 5.4 to

5.12 (decomposed circuit).

The initial circuit does not use standard gates but its analysis is still clear, the top qubits

are the controls and when the output is 111, 101, 011, or 001(corresponding to numbers 7, 5,

3 and 1) activate the X gate in the target qubit. The decomposed circuit behaves in the same

way (this can be veri�ed in table 5.5 where the outcomes of the simulation of both circuits

are portrayed) but has a lot more gates, an additionally auxiliary qubit, and is di�cult to

read and to analyse.

Since the results of the simulation and of the original circuit are the same, in the experiments

below the second is not given.

Moreover, this experiment also returns the description of the circuits. The description of

the original circuit can be shown in here (listing 5.14) but the description of the decomposed

circuit is in the appendix (listing C.10).

1 Inputs : none

Figure 5.5.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 2).

5.3. Quipper 73

Figure 5.6.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 3).

Figure 5.7.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 4).

Figure 5.8.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 5).

Figure 5.9.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 6).

Figure 5.10.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 7).

5.3. Quipper 74

Circuit Initial State Preparation Output Measure Probability
(%)

q0 q1 q2 q3 q0 q1 q2 q3

O 0 0 0 0 0 0 0 0 100
D 0 0 0 0 0 0 0 0 100
O 0 0 0 1 0 0 0 1 100
D 0 0 0 1 0 0 0 1 100
O 1 1 1 0 1 1 1 1 100
D 1 1 1 0 1 1 1 1 100
O 1 1 1 1 1 1 1 0 100
D 1 1 1 1 1 1 1 0 100

O Hadamard Hadamard Hadamard 0

1 1 1 1 12.499999
0 1 1 1 12.499999
1 0 1 1 12.499999
0 0 1 1 12.499999
1 1 0 0 12.5
0 1 0 0 12.5
1 0 0 0 12.5
0 0 0 0 12.5

D Hadamard Hadamard Hadamard 0

1 1 1 1 12.499999
0 1 1 1 12.499999
1 0 1 1 12.499999
0 0 1 1 12.499999
1 1 0 0 12.5
0 1 0 0 12.5
1 0 0 0 12.5
0 0 0 0 12.5

O Hadamard Hadamard Hadamard 1

1 1 0 1 12.499999
0 1 0 1 12.499999
1 0 0 1 12.499999
0 0 0 1 12.499999
1 1 1 0 12.5
0 1 1 0 12.5
1 0 1 0 12.5
0 0 1 0 12.5

D Hadamard Hadamard Hadamard 1

1 1 0 1 12.499999
0 1 0 1 12.499999
1 0 0 1 12.499999
0 0 0 1 12.499999
1 1 1 0 12.5
0 1 1 0 12.5
1 0 1 0 12.5
0 0 1 0 12.5

Table 5.5.: Results of Quipper simulation both circuits of qfor with 3 qubits. The letter O stands
for Original circuit and the letter D stands for the Decomposed circuit.

5.3. Quipper 75

Figure 5.11.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 8).

Figure 5.12.: Decomposed circuit generated byqfor X working with 3 qubits as controls (section 9).

QInit0 (0)

3 QInit0 (1)

QInit0 (2)

5 QInit0 (3)

Comment [""](0: " |0 >[0] " , 1: " |0 >[1] " , 2: " |0 >[2] " , 3: " |0>")

7 Comment [" before oracle "]()

Comment [" ENTER : exact_synthesis "](0: "q [0] " , 1: "q [1] " , 2: "q [2] " , 3: "q [3] ")

9 QGate ["X"](3) with controls =[+0 , +1 , +2]

QGate ["X"](3) with controls =[+0 , -1, +2]

11 QGate ["X"](3) with controls =[-0 , +1 , +2]

QGate ["X"](3) with controls =[-0 , -1, +2]

13 Comment ["EXIT : exact_synthesis "](0: "q [0] " , 1: "q [1] " , 2: "q [2] " , 3: "q [3] ")

Comment [" after oracle "]()

15 QMeas (3)

QMeas (2)

17 QMeas (1)

QMeas (0)

19 Outputs : 0: Cbit , 1: Cbit , 2: Cbit , 3: Cbit

Listing 5.14: Description of circuit of the qfor X gate working with 3 qubits as controls.

for- loop quantamorphism over Y gate In the quantamorphism for Y the

required results were:

ˆ The circuit;

ˆ The description of the circuit;

5.3. Quipper 76

Figure 5.13.: Circuit from for-loop quantamorphism over Y gate.

Figure 5.14.: Decomposed circuit of for-loop quantamorphism overY gate (section 1).

ˆ The simulation of the circuit;

ˆ The decomposed circuit;

ˆ The description of the decomposed circuit;

ˆ And the simulation of the decomposed circuit.

The initial circuit generated from the matrix is in �gure 5.13. This circuit utilises the phase

rotation gate S and is much more complex to analyse. Nevertheless, it is clear that the target

qubit will only be altered when the controls represent odd numbers.

The description of the circuit is in appendix C.23 4, and the simulation results can be found

in table 5.6.

The gates of the type control-control-S do not have a trivial implementation on QISKit.

The result of this, was the need for decomposition (�gures 5.14 to 5.21).

Obviously, the decomposition increases the number of gates considerably and adds the

additional ancilla.

Figure 5.15.: Decomposed circuit of for-loop quantamorphism overY gate (section 2).

4this description was not translated to QISKit.

5.3. Quipper 77

Initial State Preparation Output Measure Probability
(%)

q0 q1 q2 q0 q1 q2

0 0 0 0 0 0 100
0 0 1 0 0 1 100

0 0 Hadamard
0 0 1 50
0 0 0 50

1 1 0 1 1 1 100
1 1 1 1 1 0 100

1 1 Hadamard
1 1 1 50
1 1 0 50

Hadamard Hadamard 0

1 1 1 25
0 1 1 25
1 0 0 25
0 0 0 25

Hadamard Hadamard 1

1 0 1 25
0 0 1 25
1 1 0 25
0 1 0 25

Hadamard Hadamard Hadamard

1 1 1 12.499999
0 1 1 12.499999
1 0 1 12.499999
0 0 1 12.499999
1 1 0 12.5
0 1 0 12.5
0 1 1 12.5
0 0 0 12.5

Table 5.6.: Results of Quipper simulation in the circuit from for-loop quantamorphism over Y gate.
These values in the original circuit match the decomposed circuit.

Figure 5.16.: Decomposed circuit of for-loop quantamorphism overY gate (section 3).

Figure 5.17.: Decomposed circuit of for-loop quantamorphism overY gate (section 4).

5.3. Quipper 78

Figure 5.18.: Decomposed circuit of for-loop quantamorphism overY gate (section 5).

Figure 5.19.: Decomposed circuit of for-loop quantamorphism overY gate (section 6).

Figure 5.20.: Decomposed circuit of for-loop quantamorphism overY gate (section 7).

Figure 5.21.: Decomposed circuit of for-loop quantamorphism overY gate (section 8).

5.3. Quipper 79

Figure 5.22.: Circuit from for-loop quantamorphism over Hadamard gate .

Figure 5.23.: Decomposed circuit of for-loop quantamorphism over Hadamard gate (section 1).

The simulations of the circuit of for-loop quantamorphism over Y gate result in simulations

with the exact same output values as the ones presented by the previous circuit (table 5.6).

Finally, the description of the decomposed circuit can be found in appendix C.24.

creating superposit ion via H The required results for the quantamorphism of

Hadamard gate are the same as the quantamorphism ofY gate, in this case, the last objective

end up being unachievable5.

The other results were obtained as expected. Figure 5.22 shows the circuit generated by

the matrix. As anticipated this circuit adds superposition in a target qubit initial set to 0 if

the control qubits represent the numbers 1 or 3. Simulation test to this circuits veri�es this

observation (table 5.7). The description of this circuits was not translated to QISKit because

of the control-control-Hadamard gate, but can be found in appendix C.34. This conditional

gate also called for decomposition, see �gures 5.23 to 5.26.

Figure 5.24.: Decomposed circuit of for-loop quantamorphism over Hadamard gate (section 2).

5recall remark 5.1.

5.3. Quipper 80

Initial State Preparation Output Measure Probability
(%)

q0 q1 q2 q0 q1 q2

0 0 0 0 0 0 100
0 0 1 0 0 1 100

0 0 Hadamard
0 0 1 50
0 0 0 50

1 1 0
1 1 1 50
1 1 0 50

1 1 1
1 1 1 50
1 1 0 50

1 1 Hadamard after 1 1 1 1 100
1 1 Hadamard after 0 1 1 0 100

Hadamard Hadamard 0

1 1 1 12.499999
0 1 1 12.499999
1 1 0 12.499999
0 1 0 12.499999
1 0 0 25
0 0 0 25

Hadamard Hadamard 1

1 1 1 12.499999
0 1 1 12.499999
1 0 1 24.999999
0 0 1 24.999999
1 1 0 12.500003
0 1 0 12.500003

Hadamard Hadamard Hadamard after 0

1 0 1 12.5
0 0 1 12.5
1 1 0 24.999999
0 1 0 24.999999
1 0 0 12.500001
0 0 0 12.500001

Hadamard Hadamard Hadamard after 1

1 1 1 24.999999
0 1 1 24.999999
1 0 1 12.500001
0 0 1 12.500001
1 0 0 12.5
0 0 0 12.5

Table 5.7.: Results of Quipper simulation in the circuit from for-loop quantamorphism over Hadamard
gate .

Figure 5.25.: Decomposed circuit of for-loop quantamorphism over Hadamard gate (section 3).

5.3. Quipper 81

Figure 5.26.: Decomposed circuit of for-loop quantamorphism over Hadamard gate (section 4).

Figure 5.27.: Circuit from quantamorphism foldr XOR .

Identical to the former example, this decomposition adds a large number of gates (mainly

CNOT , Hadamard gate and rotation gates of the typeT and T y) and an auxiliary qubit.

The description of this circuits is in appendix C.35.

foldr quantamorphism over X OR gate Like the previous example, this circuit

fails to test the simulation of its decomposition.

On the other hand, this circuit di�ers from the previous due to its using 5 qubits - 4 control

qubits (q0, q1, q2 and q3) and 1 target qubit (q4), its aspect is notably distinct from what has

been seen so far (�gure 5.27). The simulation of the circuits generated is in table 5.8.

The control-control-control-control-X gate needs undoubtedly decomposition. Such decom-

position generates the circuit in �gure 5.28 to 5.53. The description of this circuit is in

appendix C.48.

Figure 5.28.: Decomposed circuit from fold quantamorphism overXOR gate (section 1).

5.3. Quipper 82

Initial State Preparation Output Measure Probability (%)
q0 q1 q2 q3 q4 q0 q1 q2 q3 q4

0 0 0 0 0 0 0 0 0 0 100
0 0 0 0 1 0 0 0 0 1 100
1 1 1 1 0 1 1 1 1 1 100
1 1 1 1 1 1 1 1 1 0 100

H H H H 0

1 1 1 1 1 6.249999
0 1 0 1 1 6.249998
1 0 0 1 1 6.249998
1 1 1 0 1 6.2499996
0 1 1 0 1 6.2499996
1 0 1 0 1 6.2499993
0 1 0 0 1 6.250001
1 0 0 0 1 6.250001
0 1 1 1 0 6.249999
1 0 1 1 0 6.2499985
0 0 1 1 0 6.2499985
1 1 0 1 0 6.25
0 0 0 1 0 6.25
0 0 1 0 0 6.2500015
1 1 0 0 0 6.250001
0 0 0 0 0 6.250001

H H H H 1

0 1 1 1 1 6.2499985
1 0 1 1 1 6.249998
0 0 1 1 1 6.249998
1 1 0 1 1 6.2499996
0 0 0 1 1 6.2499996
0 0 1 0 1 6.250001
1 1 0 0 1 6.25
0 0 0 0 1 6.25
1 1 1 1 0 6.2499993
0 1 0 1 0 6.2499985
1 0 0 1 0 6.2499985
1 1 1 0 0 6.25
0 1 1 0 0 6.25
1 0 1 0 0 6.2499996
0 1 0 0 0 6.2500015
1 0 0 0 0 6.2500015

H H H H H

1 1 1 1 1 3.1249996
0 1 1 1 1 3.1249996
1 0 1 1 1 3.1249996
0 0 1 1 1 3.1249996
1 1 0 1 1 3.1249998
0 1 0 1 1 3.1249998
1 0 0 1 1 3.1249998
0 0 0 1 1 3.1249998
1 1 1 0 1 3.1249998
0 1 1 0 1 3.1249998
1 0 1 0 1 3.1249998
0 0 1 0 1 3.1249998
1 1 0 0 1 3.125
0 1 0 0 1 3.125
1 0 0 0 1 3.125
0 0 0 0 1 3.125
1 1 1 1 0 3.1249996
0 1 1 1 0 3.1249996
1 0 1 1 0 3.1249996
0 0 1 1 0 3.1249996
1 1 0 1 0 3.1249998
0 1 0 1 0 3.1249998
1 0 0 1 0 3.1249998
0 0 0 1 0 3.1249998
1 1 1 0 0 3.1249998
0 1 1 0 0 3.1249998
1 0 1 0 0 3.1249998
0 0 1 0 0 3.1249998
1 1 0 0 0 3.125
0 1 0 0 0 3.125
1 0 0 0 0 3.125
0 0 0 0 0 3.125

Table 5.8.: Results of Quipper simulation in the circuit from quantamorphism foldr XOR .

5.3. Quipper 83

Figure 5.29.: Decomposed circuit from fold quantamorphism overXOR gate (section 2).

Figure 5.30.: Decomposed circuit from fold quantamorphism overXOR gate (section 3).

Figure 5.31.: Decomposed circuit from fold quantamorphism overXOR gate (section 4).

Figure 5.32.: Decomposed circuit from fold quantamorphism overXOR gate (section 5).

5.3. Quipper 84

Figure 5.33.: Decomposed circuit from fold quantamorphism overXOR gate (section 6).

Figure 5.34.: Decomposed circuit from fold quantamorphism overXOR gate (section 7).

Figure 5.35.: Decomposed circuit from fold quantamorphism overXOR gate (section 8).

Figure 5.36.: Decomposed circuit from fold quantamorphism overXOR gate (section 9).

5.3. Quipper 85

Figure 5.37.: Decomposed circuit from fold quantamorphism overXOR gate (section 10).

Figure 5.38.: Decomposed circuit from fold quantamorphism overXOR gate (section 11).

Figure 5.39.: Decomposed circuit from fold quantamorphism overXOR gate (section 12).

Figure 5.40.: Decomposed circuit from fold quantamorphism overXOR gate (section 13).

5.3. Quipper 86

Figure 5.41.: Decomposed circuit from fold quantamorphism overXOR gate (section 14).

Figure 5.42.: Decomposed circuit from fold quantamorphism overXOR gate (section 15).

Figure 5.43.: Decomposed circuit from fold quantamorphism overXOR gate (section 16).

Figure 5.44.: Decomposed circuit from fold quantamorphism overXOR gate (section 17).

5.3. Quipper 87

Figure 5.45.: Decomposed circuit from fold quantamorphism overXOR gate (section 18).

Figure 5.46.: Decomposed circuit from fold quantamorphism overXOR gate (section 19).

Figure 5.47.: Decomposed circuit from fold quantamorphism overXOR gate (section 20).

Figure 5.48.: Decomposed circuit from fold quantamorphism overXOR gate (section 21).

5.3. Quipper 88

Figure 5.49.: Decomposed circuit from fold quantamorphism overXOR gate (section 22).

Figure 5.50.: Decomposed circuit from fold quantamorphism overXOR gate (section 23).

Figure 5.51.: Decomposed circuit from fold quantamorphism overXOR gate (section 24).

Figure 5.52.: Decomposed circuit from fold quantamorphism overXOR gate (section 25).

5.4. QISKit and IBM Q 89

Figure 5.53.: Decomposed circuit from fold quantamorphism overXOR gate (section 26).

Figure 5.54.: Decomposed circuit from fold quantamorphism overXOR gate (section 27).

It is also important to notice that this circuit adds two ancillary qubits. This gives the

circuit a total of 7 qubits, this was signi�cant when applying this circuit in section 5.4.

5.4 qiskit and ibm q

IBM Q Experience is a cloud-based platform that allows users from all over the world to

interact with real quantum devices available from IBM Research labs. Everyone interested in

working with a quantum computer can do so using the quantum composer (this helps users

to create and understand quantum programs) or the QISKit interface (Quantum Information

Science Kit).

The results of Quipper make the need to use QISKit clear. QISKit is a Pythons interface

that lets one execute multiple circuits in devices with 5 or 16 qubits. The QISKit documenta-

tion has a collection of useful tutorials. The Jupyter Notebooks of the tutorials were adopted

as guidelines for the programs presented in this chapter.

The �rst step in every experiment is to verify the connection and identify the machines and

simulators available. It is also advisable to keep track of the number of credits available. The

maximum number of credits is 15, and to recover takes 24 hours or the job has to run o� the

queue. The code used to accomplish this task can be found in appendices D.1 and D.2.

5.4. QISKit and IBM Q 90

for- loop quantamorphism over X gate The goal of this experiment is to im-

plement and test circuits generated from for-loop quantamorphism over theX by Quipper

(�gure 5.2). Recall the �rst circuit which employs two To�oli gates, one of which has a negated

control.

QISKit has a function to write simple To�oli gates (ccx). The implementation of negated

control can be done by applying aX gate before and after the control. This corresponds to a

small number of gates that can be written easily (see listing 5.15). However, a short analysis

of the following circuits prompted the creation of a tool, �QuipperToQISKit.gawk� (Neri and

Rodrigues, 2018). Because of this example, this tool makes the translation of To�oli toccx.

Moreover, the translation tool pays attention to the case of negated control and adds the

correspondingX gates.

1 # the circuit we want :

qc . ccx (qr [0] , qr [1] , qr [2])

3 qc .x(qr [0])

qc . ccx (qr [0] , qr [1] , qr [2])

5 qc .x(qr [0])

Listing 5.15: QISKit circuit for the matrix of the quantamorphism for X working with 2

control qubits.

In listing 5.15, qc stands for quantum circuit, x and ccx are quantum gates andqr is a

quantum register6.

One of the drawbacks of this tool is not to be programmed to update the number of qubits

and bits registered. This circuit works with 3 quantum registers 3 bits registers. Note that

listing 5.15 has to run before the de�nition of circuit seen in listing 5.16.

1 # create Quantum Register cal led "qr " with 3 qubits

qr = qp . create_quantum_register ('qr ' , 3)

3 # create Classical Register cal led "cr " with 3 bits

cr = qp . create_classical_register ('cr ' , 3)

Listing 5.16: QISKit registers for matrix of the for-loop quantamorphism over X gate

In the �rst implementation of this circuit, the qubits were maintained in the default state

(j0i). As seen in the simulation of Quipper (table 5.4) the output expected isj000i .

To reach the goal of running the program in a real device there are some steps that have

to be taken �rst. Namely, produce the matrix that QISKit associates with the implemented

circuit and simulate the result in QISKit simulation.

6The initialization of qc and qr is in appendix D.3.

5.4. QISKit and IBM Q 91

These results and the main goal (running circuit in real device) can be achieved by applying

the function execution7. The di�erence between the three tasks resides in the type of simulator

or computer given.

Starting with the veri�cation of matrix, the execution of the function runs in the local

unitary simulator. This returns the equivalent unitary transformation of the circuit (Javadi-

Abhari et al., 2018). The local unitary simulator has some restrictions, namely, it has only

one shot and can not be used with measurements or resets. Thus, the measurement gates

were only added later on the Jupyter Notebook.

The second goal is a local simulation, accomplished by implementing backendlocal_qasm_

simulator . In this simulator, one is allowed to choose the number of shots (from 1 to 8192).

This experiment ran with 1024 shots, i.e. the measures were taken 1024 times. The results of

this execution can be displayed in a histogram (a bar-graphic with the percentage of getting

each measure) or have the speci�c number of times a measure was obtained (this information

can be acquired with the functionsget_count or get_data).

When the circuit is compiled to local_qasm_simulator the system begins to do adjust-

ments to the circuit initially de�ned (mainly to assure the gates used are standard). In order

to record these alterations, the image and corresponding QASM8 of the decomposed circuit

were both printed.

Finally, running in a real device the �rst point to consider is how to select a device. If the

goal is just to make a quick test, it is advisable to check which is the device with fewer jobs

in the queue (the de�nition of a function that does exactly this can be found in the QISKit

tutorial). This function was used to know which experiments to execute �rst.

The experiments ran in these case-studies have a considerable number of conditional gates

which increased the error rate. Therefore, in order to execute these experiments with fewer

errors, it is important to choose the device with the best behaviour in terms of Multiqubit

gate error. Whenever possible, programs are executed on theibmqx4 device.

It is no surprise that running this circuit adds further modi�cations to it. This circuit has

to be adapted to the selected device and make an e�ort to decrease the error rate in this

speci�c machine. In this way, it is not only relevant to get the data about the output, but

also collect the information related to the device used (like its characteristics by the time of

the experiment) and the circuit generated by compiling in the selected device.

The following goals were to verify if there were ways to decrease the error rate and then

test the circuit with di�erent state preparation. The best option to decrease the error rate is

to make an adaptation to the programs written in QISKit. In QISKit, the least signi�cant

bit (LSB) and the most signi�cant bit (MSB) are not in the usual order. While most of

the scienti�c use MSB on the rightmost position and the LSB on the leftmost, QISKit does

7The function execution can also be replaced by the function compile and run.
8QASM is a simple text �assembly" language for describing quantum circuits in general (Cross et al., 2017).

5.4. QISKit and IBM Q 92

Q3

Q4

Q2

Q1

Q0

Figure 5.55.: Coupling map of IBM Q 5 Tenerife V1.x.x (ibmqx4). The direction of the arrows reads
from control to target e.g. the qubit Q2 controls Q0 and Q1 and can be controlled by
the qubits Q4 and Q3, and the Q4 has to direct in�uence in Q0 or Q1.

exactly the opposite. When adapting circuits to QISKit, not only are better results expected

in the local unitary simulator but also fewer errors in the execution on the real device.

To clarify why lesser error rates are expected recall that in the original circuit, q0 and q1

control q2 and this is the exact opposite of what IBM Q 5 Tenerife is programmed to do (see

�gure 5.55 where the coupling of this device is de�ned). Moreover, the alteration of the MSB

and LSB transforms q2 in another control and q0 in the target and this equals the coupling

map (q0 can be controlled by q1 and q2). Ultimately, this corresponds to fewer gates used to

decompose the circuit and fewer problems with relaxation and decoherence.

Implementing the adapted circuit corresponds to make a new input circuit where functions

�nd and replace were used to change �2� to �0� and �0� to �2� (listing 5.17). This was the

only alteration needed on the original circuit to get the circuit adapted to QISKit. All the

other steps were repeated with the same inputs.

1 # the circuit we want :

qc . ccx (qr [2] , qr [1] , qr [0])

3 qc .x(qr [2])

qc . ccx (qr [2] , qr [1] , qr [0])

5 qc .x(qr [2])

Listing 5.17: QISKit circuit for matrix of quantamorphism for X .

Finally, tests can have diverse state preparations. In this situation, there is no interest in

seeing the matrix because adding the gates to prepare the state changes it. The intent here is

to test if the circuit really does what is expected or if by default tends to have more outputs

in the state j000i . These tests were made by:

ˆ adding an X gate to all qubits the initial state was set to q2 = 1, q1 = 1 and q0 = 1;

ˆ adding an Hadamard gate to q0 the initial state was set to q2 = 0 , q1 = 0 and

q0 = j0i + j1ip
2

;

5.4. QISKit and IBM Q 93

ˆ adding Hadamard gates toq1 and q2 the initial state was set to q2 = j0i + j1ip
2

, q1 = j0i + j1ip
2

and q0 = 0;

ˆ by entangling q1 and q2, the initial state was set to Bell state in q1 and q2 and q0 = 0.

Besides the aforementioned alterations, these experiments were executed like the original

circuit.

This example has yet another matrix to implement. The qfor of X gate with 3 qubits as

controls needs decomposition and to avoid errors it is also crucial to use the tool Quipper-

ToQISKit (Neri and Rodrigues, 2018). As already mentioned, this tool does not update the

number of circuits in the register. This means that the di�erences start with the number of

qubits and bits registered, in this case 5 (3 controls, 1 target and 1 auxiliary qubit).

This experiment follows the �rst example. After the register there is the de�nition of the

circuit. Since this circuit has a huge number of gates its de�nition is shown in appendix D.18.

As can be seen in this appendix the �rst implementation of this matrix is done with the initial

default state j000i .

After executing in a local unitary simulator, the measures are added. Note that the auxiliary

qubit (q3) does not need to be measured, thus resulting in the measure implementation seen

in listing 5.18.

1 qc . measure (qr [3] , cr [3])

qc . measure (qr [2] , cr [2])

3 qc . measure (qr [1] , cr [1])

qc . measure (qr [0] , cr [0])

Listing 5.18: QISKit measurement of qfor of X gate with 3 qubits to control

The implementation of the QASM simulator, the execution in real devices and the informa-

tion associated to the compilations match the previous implementation. Recall that, although

this program runs with more qubits it is still possible to run it on the ibmqx4 device.

Another implementation detail associated to this qfor is the adaptation to improve results.

The di�erence here lays in the circuit implemented (appendix D.18) and the measures (listing

5.19).

1 qc . measure (qr [1] , cr [1])

qc . measure (qr [2] , cr [2])

3 qc . measure (qr [3] , cr [3])

qc . measure (qr [4] , cr [4])

Listing 5.19: QISKit measurement of qfor of X gate with 3 qubits to control adapted to

QISKit

5.4. QISKit and IBM Q 94

Since the di�erences between the direct translation and the adaptation are not signi�cant,

it was decided to continue the experiments with the circuit adapted. The experiments where

the state preparation is changed were examined with the initial state at:

ˆ j1110i achieved by adding anX gate to all the control qubits;

ˆ q4 = 0, q3 = j0i + j1ip
2

, q2 = 1 and q1 = 1, this is achieved by letting the target q4

untouched, adding Hadamard gate to the least signi�cant bit of the controls and adding

X gates to the rest of the controls;

ˆ q4 = 0, q3 = 1, q2 = 0 and q1 = j0i + j1ip
2

this is achieved by addingX gate to the least

signi�cant qubit of the controls and adding a Hadamard gate to the most signi�cant

qubits.

Aside from the state preparation, nothing changes in the rest of the implementation of this

example.

for- loop quantamorphism over Y gate This example aims at running the

decomposed circuit seen in section 5.3. Similar to what has been seen in a previous example

with the decomposed circuit, it is clear that making the translation by hand, could result in

multiple mistakes. Circuits this large call for the QuipperToQISKit tool (Neri and Rodrigues,

2018). Once again, recall that this tool does not update the number of circuits registered, so

the initial di�erence between the circuit of the quantamorphism of Y and the circuits seen

in the quantamorphism of X examples is the initialization of quantum and classical registers

(appendix D.19).

The initial experiment executed for the quantamorphism ofY is made with the initial states

in the default state (j0i), and so the outputs should maintain this states unaltered. Recall

from the experiments in Quipper that q3 is the ancilla and there is no interest to measure

this result. Also, in this directly translated circuit, q2 is the target qubit.

Executing in the backend local_unitary_simulator can be seen in listing 5.20. From

this experiment is expected a di�erent matrix from the one implemented in Quipper due to

the LSB/MSB issue. And similar to previous examples the measure has to be added later.

1 job = execute (qc , backend = ' local_uni tary_simulator ')

np . round (job . result () . get_data (qc) [' unitary '] , 3)

Listing 5.20: QISKit implementation of local_unitary_simulator .

The following execution, portrayed in the listing 5.21, shows how to use the backend

local_qasm_simulator and di�erent techniques to print the results. Moreover, the new

QASM circuit and description are both printed.

5.4. QISKit and IBM Q 95

job = execute (qc , backend = ' local_qasm_simulator ' , shots =1024 , max_credits =3)

2

lapse = 0

4 interval = 5

while not job .done :

6 print ('Status @ {} seconds '. format (interval * lapse))

print (job . status)

8 t ime . sleep (interval)

lapse += 1

10 print (job . status)

12 print (job . result () . get_counts (qc))

plot_histogram (job . result () . get_counts (qc))

Listing 5.21: QISKit implementation of local_qasm_simulator .

This circuit still operates with less than 6 qubits and so it can run on the ibmqx4 device

(implementation in listing 5.22). This implementation enables one to know the status of the

experiment, it gives a notion of how long the job stays in the queue and it informs the user

when the job is �nally running.

1 shots =1024

max_credits =3

3 job_exp = execute (qc , backend =backend , shots =shots , max_credits = max_credits)

5 lapse = 0

interval = 10

7 while not job_exp .done :

print ('Status @ {} seconds '. format (interval * lapse))

9 print (job_exp . status)

time . sleep (interval)

11 lapse += 1

print (job_exp . status)

Listing 5.22: QISKit implementation of the circuit in backend ibmqx4

Facing tremendous errors in this case, three di�erent strategies were tested to decrease the

error rate:

1. The adaptation to QISKit (i.e. dealing with the LBS/MSB con�ict);

2. Test the circuit in a di�erent device (namely, ibmqx5);

3. Test with the maximum number of shots (8192 shots).

The advantages of the �rst strategy were already expressed in theqfor of X gate but the

improvements may not be so visible as seen in the �rst example.

5.4. QISKit and IBM Q 96

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q0 Q15 Q14 Q13 Q12 Q11 Q10 Q9

Figure 5.56.: Coupling map of IBM Q 16 Rueschlikon V1.x.x (ibmqx5). The direction of the arrows
reads from control to target.

The second strategy aims mostly to compare the di�erent devices. Althoughibmqx5 has

a lot more qubits than ibmqx4 the coupling is still very limited (compare the �gures 5.55 to

5.56).

In the circuit of the mqfor of Y gate, it is likely that the error rate problems derive from

the big number of gates. If this is the case, none of the strategies will be very helpful and

decoherence will be present in all the cases.

The last strategy was to increase the number of shots. However, increasing the number

of shots also increases the number of credits spent in the experiments (listing D.23). Conse-

quently, this may not be the best option.

After a simple analysis of these results, adaptation to QISKit was the selected method to

continue the experiments.

Since the circuits of the quantamorphism overY produce a considerable amount of errors,

this circuit was only tested for cases with one or two possible acceptable answers. The states

were prepared with:

ˆ control qubits (q3 and q2) were left in the default state (j0i) and the target (q1) was

prepared with a Hadamard gate.

ˆ all qubits (q3, q2 and q1) were prepared with a X gate. The input state was j111i

ˆ the control qubits (q3 and q2) were prepared to be in a Bell state (maximum entangle-

ment), this was achieved by sendingq3 to a superposition state through an Hadamard

gate and the using aCNOT gate whereq3 was the control and q2 was the target. The

target q1 was left in the default state.

Note that q0 in the adaptation case is the auxiliary qubit.

creating superposit ion via H As we already know, this example has a lot in

common with the quantamorphism of Y gate. Consequently, this experiment follows the

same procedure:

1. translation of the circuit in Quipper to QISKit using the tool;

5.4. QISKit and IBM Q 97

2. run the original circuits with initial state j000i in the simulators and in the backend;

3. test methods to decrease the error rate;

4. use the best option to implement di�erent initial states.

The �rst step is to translate the circuit using, the only command line need to implement

QuipperToQISKit is in listing 5.23.

gawk -f quipperToQISKit . gawk circui t_h_quipper . txt > circui t_h_QISKit . txt

Listing 5.23: Bash command to run the tool QuipperToQISKit.

The initial circuit was executed in the backendslocal_unitary_simulator , local_qasm_

simulator and ibmqx4. In this case, the only strategy used to improve the data was the

adaptation to QISKit, but it did not accomplish its goal 9.

Therefore, the following experiments used the original circuit. Like the quantamorphism of

Y gate, these tests were only made in situations where the output did not accept more than

two results, in particular:

ˆ q0 = 1, q1 = 1 and q2 = 0 produced by addingX gates to the control qubits;

ˆ q0 = 1, q1 = 1 and q2 = 1 produced by addingX gates to all qubits;

ˆ q0 = 1, q1 = 1 and q2 = j0i + j1ip
2

produced by adding X gates to the control qubits and

a Hadamard gate to the target qubit;

ˆ q0 = 1, q1 = 1 and q2 = j0i�j 1ip
2

produced by adding X gates to all qubits and then a

Hadamard gate to the target qubit.

quantamorphism over X OR gate This experiment has some signi�cant di�er-

ences from the previous ones since this is the only circuit that runs with more than 5 qubits.

Actually, the number of registers has to be updated to support the 7 qubits and so the circuit

has to run on the ibmqx5 device.

When this simulation was run for the �rst time the result was �INVALID QASM�. Mean-

while, updates were made in the system and this circuit run with no problems (besides the

large error rate). This con�rms the need to register the information of the devices used in

the experiments. Such data is obtained with the functions in listings D.7 and D.8.10

The attempts to improve this circuit included adaptation and adaptation with 8192 shots.

These two improvement e�orts were used with the initial state set to j00000i . Thereupon it

was decided to continue the experiments with the adapted circuit with 1024 shots.

9In section 5.5 further analysis will be made to understand why adaptation improves some situations and
not others.

10Note that these functions were used in all the experiments.

5.4. QISKit and IBM Q 98

Figure 5.57.: Circuit from for-loop quantamorphism over X gate.

The following experiments tested with the input states:

ˆ Hadamard gate in target qubit (q2 = j0i + j1ip
2

, q3 = 0, q4 = 0, q5 = 0 and q6 = 0);

ˆ and X gate in control qubits(q2 = 0, q3 = 1, q4 = 1, q5 = 1 and q6 = 1);

ˆ and X gate in all qubits (q2 = 1, q3 = 1, q4 = 1, q5 = 1 and q6 = 1).

To conclude the implementation of QISKit its worth mentioning that everything relevant

to implement or repeat in these experiments can be found in appendix D.

for- loop quantamorphism over X gate As already seen in section 5.3, the

results follow the implementations of the experiments. Recall that the outputs required are:

1. the circuit as it was written;

2. the matrix;

3. the simulation output;

4. the circuit that was simulated;

5. the output of running the experiment;

6. and the circuit of running the experiments.

Starting with the initial circuit (�gure 5.57) it is easy to verify that this circuit is the one

expected, with two To�oli gates and X gates to negate one of the controls.

The output of the unitary matrix corresponding to this circuit (matrix 5.6) does not seem

to agree to with the results of GHCi implementation (matrix 5.2). This is a direct result of

5.4. QISKit and IBM Q 99

Figure 5.58.: Circuit from for-loop quantamorphism over X gate with measurement gate.

having the LSB and the MSB in the opposite order. Section 5.5 explains in detail how this

works.
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.6)

Despite the di�erences in the matrix, both programs (the circuit running in Quipper and the

circuit running in QISKit) perform the same task, i.e both of them use q0 and q1 to control

an alteration to qubit 2.

The following step consists of adding the measurement, leading to the circuit of �gure 5.58.

Both proceedings compile and run, resulting in the same output (listing 5.24).

1 { '000 ': 1024}

Listing 5.24: Get_count output.

Listing 5.24 reads as: all the 1024 shots have the same result. Another way to present this

output can be seen in �gure 5.59.

Because this simulator includes all the Open QASM commands and works in a way com-

parable to the devices in IBM Q Experience (Javadi-Abhari et al., 2018) the gates allowed

in the devices are more restricted than the ones that can be described. For instance, To�oli

gates cannot be implemented in the device and have to be decomposed following a method

similar to the one by Cross et al. (2017). Knowing this information, it is no surprise that

the QASM resulting from compiling the initial circuit has these gates decomposed (see �gure

5.60 and listing 5.25). This decomposition is quite generic because it has to be adaptable to

multiple devices.

5.4. QISKit and IBM Q 100

Figure 5.59.: Histogram of result.

Figure 5.60.: Decomposed circuit from matrix quantamorphism for X.

1 OPENQASM 2.0;

include " qel ib1 . inc " ;

3 qreg qr [3];

creg cr [3];

5 ccx qr [0] , qr [1] , qr [2];

x qr [0];

7 ccx qr [0] , qr [1] , qr [2];

x qr [0];

9 measure qr [0] -> cr [0];

measure qr [1] -> cr [1];

11 measure qr [2] -> cr [2];

Listing 5.25: QASM corresponding to the circuit in �gure 5.60.

Since this experiment only requires 3 qubits there is no need to use theibmqx5 (team, 2018)

which is the device ready for 16 qubits. At the time this thesis was written the ibmqx5 was

the public device with the bigger number of qubits available.

Running the circuit in a real device needs another �decomposition� this time is an adapta-

tion of the required circuit to the device itself (�gures 5.61 and 5.62).

Due to its size, this circuit is illegible, and for this reason, printing the QASM string is

useful for further analyse (listing 5.26). In the QASM, the unitary gates are perfectly clear.

These unitary gates (Research and the IBM QX team, 2017) are the general case of the gates

implemented so far. Their function in here is analyzed in the section 5.5.

	1 Introduction
	1.1 The rise of quantum computing
	1.2 From classical to quantum programming
	1.3 Overview of the literature
	1.4 Aims of the dissertation
	1.5 Structure of the dissertation

	2 Background
	2.1 Categories
	2.2 Functors
	2.3 Monads
	2.4 Recursion
	2.5 Allegories
	2.6 Summary

	3 Quantum computing
	3.1 Overview of quantum theory
	3.2 Bit vs qubit
	3.3 Operations
	3.4 Density matrix
	3.5 Peculiarities of quantum computing
	3.6 Computing versus physics
	3.7 Summary

	4 Calculating quantum programs
	4.1 Increasing injectivity
	4.2 Recursive programs
	4.3 Quantamorphism
	4.4 Running quantamorphisms
	4.5 Summary

	5 Application - case studies and experiments
	5.1 Challenges
	5.2 GHCi
	5.3 Quipper
	5.4 QISKit and IBM Q
	5.5 Discussion
	5.6 Summary

	6 Conclusions and future work
	6.1 Prospect for future work

	A Laws of the algebra of programming
	B Quipper Implementation
	C Quipper Results
	D QISKit implementation
	E QISKit results

